Skip to main content
Log in

Electro-Osmotic Flow of Prandtl Nanofluids with Thermal and Solutal Slip Flow Constraints: Keller Box Simulations

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The numerical simulations are performed to investigate the electro-osmotic peristaltic flow of Prandtl fluid in the presence of tiny particles in a planner channel. The analysis is performed in the presence of slip effects, magnetic force and Joule heating. The governing nonlinear boundary value problem along with nonlinear boundary conditions is solved numerically using Keller Box method as well as numerical shooting technique by using the MATLAB tool. The solution validity is also ensured by computing the solution with BVP4C solver. The results claimed from analysis convey that concentration profile declined with concentration slip while an increasing trend for concentration has been noted for Soret number. The presence of slip factor reduces the magnitude of skin friction coefficient. With increasing the Grashof number and in the presence of electric forces, the temperature profile reduces. The Nusselt number increases with electro-osmotic parameter while reverse observations are predicted for Sherwood number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. Latham TW. Fluid motions in a peristaltic pump (Doctoral dissertation, Massachusetts Institute of Technology).

  2. Mishra, M.; Rao, A.R.: Peristaltic transport of a Newtonian fluid in an asymmetric channel. Zeitschrift für angewandte Mathematik und Physik ZAMP. 54(3), 532–550 (2003 May 1)

    MathSciNet  MATH  Google Scholar 

  3. Srivastava, L.M.; Srivastava, V.P.; Sinha, S.N.: Peristaltic transport of a physiological fluid. Biorheology 20(2), 153–166 (1983 Jan 1)

    Google Scholar 

  4. Hayat, T.; Ali, N.: Effect of variable viscosity on the peristaltic transport of a Newtonian fluid in an asymmetric channel. Appl. Math. Model. 32(5), 761–774 (2008 May 1)

    MathSciNet  MATH  Google Scholar 

  5. Ali, N.; Wang, Y.; Hayat, T.; Oberlack, M.: Long wavelength approximation to peristaltic motion of an Oldroyd 4-constant fluid in a planar channel. Biorheology 45(5), 611–628 (2008 Jan 1)

    Google Scholar 

  6. Abbasi, A.; Ahmad, I.; Ali, N.; Hayat, T.: An analysis of peristaltic motion of compressible convected Maxwell fluid. AIP Adv. 6(1), 015119 (2016)

    Google Scholar 

  7. Rajashekhar, C.; Manjunatha, G.; Hanumesh Vaidya, K.V.; Prasad, S.U.; Khan, : Rheological consequences in peristaltic transport of Bingham fluid through an elastic tube with variable fluid properties and porous walls. Heat Transfer Asian Res. 49(6), 3391–3408 (2020)

    Google Scholar 

  8. Prasad, K.V.; Hanumesh Vaidya, C.; Rajashekhar, S.U.; Khan, G.M.; Viharika, J.U.: Slip flow of MHD Casson fluid in an inclined channel with variable transport properties. Commun. Theoretical Phys. 72(9), 095004 (2020)

    MathSciNet  Google Scholar 

  9. Ahmed, R.; Ali, N.; Al-Khaled, K.; Khan, S.U.; Tlili, I.: Finite difference simulations for non-isothermal hydromagnetic peristaltic flow of a bio-fluid in a curved channel: applications to physiological systems. Comput. Methods Programs Biomed. 195, 105672 (2020)

    Google Scholar 

  10. Vaidya, H.; Rajashekhar, C.; Prasad, K.V.; Khan, S.U.; Mebarek-Oudina, F.; Patil, A.; Nagathan, P.: Channel flow of MHD bingham fluid due to peristalsis with multiple chemical reactions: an application to blood flow through narrow arteries. SN Appl. Sci. 3, 186 (2021)

    Google Scholar 

  11. Ahmed, R.; Ali, N.; Khan, S.U.; Rashad, A.M.; Nabwey, H.A.; Tlili, I.: Novel micro structural features on heat and mass transfer in peristaltic flow through a curved channel. Front. Phys. 8, 178 (2020)

    Google Scholar 

  12. Hanumesh Vaidya, C.; Rajashekhar, K.V.; Prasad, S.U.; Khan, A.R.; Viharika, J.U.: MHD peristaltic flow of nanofluid in a vertical channel with multiple slip features: an application to chyme movement. Biomech. Modeling Mechanobiol. (2021). https://doi.org/10.1007/s10237-021-01430-y

    Article  Google Scholar 

  13. Javid, K.; Riaz, M.; Yu-Ming Chu, M.; Khan, I.; Khan, S.U.; Kadry, S.: Peristaltic activity for electro-kinetic complex driven cilia transportation through a non-uniform channel. Comput. Methods Programs Biomed. 200, 105926 (2021)

    Google Scholar 

  14. Burgreen, D.; Nakache, F.R.: Efficiency of pumping and power generation in ultrafine electrokinetic systems. J. Appl. Mech. 32(3), 675–679 (1965 Sep 1)

    Google Scholar 

  15. Rice, C.L.; Whitehead, R.: Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69(11), 4017–4024 (1965 Nov)

    Google Scholar 

  16. Chakraborty, S.: Augmentation of peristaltic microflows through electro-osmotic mechanisms. J. Phys. D Appl. Phys. 39(24), 5356 (2006 Dec 1)

    Google Scholar 

  17. Patankar, N.A.; Hu, H.H.: Numerical simulation of electroosmotic flow. Anal. Chem. 70(9), 1870–1881 (1998 May 1)

    Google Scholar 

  18. Tripathi, D.; Borode, A.; Jhorar, R.; Bég, O.A.; Tiwari, A.K.: Computer modelling of electro-osmotically augmented three-layered microvascular peristaltic blood flow. Microvasc. Res. 1(114), 65–83 (2017 Nov)

    Google Scholar 

  19. Tripathi, D.; Jhorar, R.; Bég, O.A.; Kadir, A.: Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel. J. Mol. Liq. 1(236), 358–367 (2017 Jun)

    Google Scholar 

  20. Dutta, P.; Beskok, A.: Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channels: finite debye layer effects. Anal. Chem. 73(9), 1979–1986 (2001 May 1)

    Google Scholar 

  21. Moghadam, A.J.: Electrokinetic-driven flow and heat transfer of a non-newtonian fluid in a circular microchannel. J. Heat Transfer 135(2), 021705 (2013)

    Google Scholar 

  22. Reddy, K.V.; Makinde, O.D.; Reddy, M.G.: Thermal analysis of MHD electro-osmotic peristaltic pumping of Casson fluid through a rotating asymmetric micro-channel. Indian J. Phys. 92(11), 1439–1448 (2018 Nov 1)

    Google Scholar 

  23. Ranjit, N.K.; Shit, G.C.: Entropy generation on electro-osmotic flow pumping by a uniform peristaltic wave under magnetic environment. Energy 1(128), 649–660 (2017)

    Google Scholar 

  24. Akbar, N.S.; Ain, Q.U.: Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic pumping. J. Thermal Analy. Calorimetry. 137(6), 1991–2006 (2019)

    Google Scholar 

  25. Shah, N.A.; Animasaun, I.L.; Chung, J.D.; Wakif, A.; Alao, F.I.; Raju, C.S.: Significance of nanoparticle’s radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: the case of water conveying copper nanoparticles. Sci. Rep. 11(1), 1–1 (2021 Jan 21)

    Google Scholar 

  26. Sowmya, G.; Gireesha, B.J.; Animasaun, I.L.; Shah, N.A.: Significance of buoyancy and Lorentz forces on water-conveying iron (III) oxide and silver nanoparticles in a rectangular cavity mounted with two heated fins: heat transfer analysis. J. Therm. Anal. Calorim. 15, 1–6 (2021 Feb)

    Google Scholar 

  27. Roy, N.C.; Pop, I.: Flow and heat transfer of a second-grade hybrid nanofluid over a permeable stretching/shrinking sheet. The European Phys. J. Plus. 135(9), 1–9 (2020 Sep)

    Google Scholar 

  28. Roy NC, Pop I. Exact solutions of Stokes' second problem for hybrid nanofluid flow with a heat source. Physics of Fluids. 2021 Jun 4;33 (6):063603.

  29. Roy, N.C.; Hossain, M.; Pop, I.: Analysis of dual solutions of unsteady micropolar hybrid nanofluid flow over a stretching/shrinking sheet. J. Appl. Comput. Mech. 7(1), 19–33 (2021)

    Google Scholar 

  30. Roy, N.C.: Augmentation in heat transfer for a hybrid nanofluid flow over a roughened surface. Case Studies Thermal Eng. 27, 101215 (2021)

    Google Scholar 

  31. Ganguly, S.; Sarkar, S.; Hota, T.K.; Mishra, M.: Thermally developing combined electroosmotic and pressure-driven flow of nanofluids in a microchannel under the effect of magnetic field. Chem. Eng. Sci. 14(126), 10–21 (2015 Apr)

    Google Scholar 

  32. Tripathi, D.; Sharma, A.; Bég, O.A.: Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule heating and Helmholtz-Smoluchowski velocity. Int. J. Heat Mass Transf. 1(111), 138–149 (2017 Aug)

    Google Scholar 

  33. Tripathi, D.; Sharma, A.; Bég, O.A.: Joule heating and buoyancy effects in electro-osmotic peristaltic transport of aqueous nanofluids through a microchannel with complex wave propagation. Adv. Powder Technol. 29(3), 639–653 (2018 Mar 1)

    Google Scholar 

  34. Prakash, J.; Sharma, A.; Tripathi, D.: Thermal radiation effects on electroosmosis modulated peristaltic transport of ionic nanoliquids in biomicrofluidics channel. J. Mol. Liq. 1(249), 843–855 (2018 Jan)

    Google Scholar 

  35. Reddy, K.V.; Reddy, M.G.; Makinde, O.D.: Thermophoresis and brownian motion effects on magnetohydrodynamics electro-osmotic jeffrey nanofluid peristaltic flow in asymmetric rotating microchannel. J. Nanofluids. 8(2), 349–358 (2019 Feb 1)

    Google Scholar 

  36. Sharma, A.; Tripathi, D.; Sharma, R.K.; Tiwari, A.K.: Analysis of double diffusive convection in electroosmosis regulated peristaltic transport of nanofluids. Phys. A Statist. Mech. Appl. 535, 122148 (2019)

    MathSciNet  Google Scholar 

  37. Ramesh, K.; Prakash, J.: Thermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel. J. Therm. Anal. Calorim. 138(2), 1311–1326 (2019 Oct 1)

    Google Scholar 

  38. Mabood, F.; Farooq, W.; Abbasi, A.: Entropy generation analysis in the electro-osmosis-modulated peristaltic flow of Eyring-Powell fluid. J. Therm. Anal. Calorim. 13, 1–6 (2021 Apr)

    Google Scholar 

  39. Abbasi, A.; Mabood, F.; Farooq, W.; Khan, S.U.: Radiation and joule heating effects on electroosmosis-modulated peristaltic flow of Prandtl nanofluid via tapered channel. Int. Commun. Heat Mass Transfer 123, 105183 (2021)

    Google Scholar 

  40. Abegunrin, O.A.; Animasaun, I.L.; Sandeep, N.: Insight into the boundary layer flow of non-Newtonian Eyring-Powell fluid due to catalytic surface reaction on an upper horizontal surface of a paraboloid of revolution. Alex. Eng. J. 57(3), 2051–2060 (2018)

    Google Scholar 

  41. Koriko, O.K.; Animasaun, I.L.; Reddy, M.G.; Sandeep, N.: Scrutinization of thermal stratification, nonlinear thermal radiation and quartic autocatalytic chemical reaction effects on the flow of three-dimensional Eyring-Powell alumina-water nanofluid. Multidiscip. Model. Mater. Struct. 14(2), 261–283 (2018)

    Google Scholar 

  42. Animasaun, I.L.; Mahanthesh, B.; Koriko, O.K.: On the motion of non-newtonian eyring-powell fluid conveying tiny gold particles due to generalized surface slip velocity and Buoyancy. Int. J. Appl. Comput. Math. 4, 137 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Shah, N.A.; Animasaun, I.L.; Chung, J.D.; Abderrahim Wakif, F.I.; Alao, C.S.K.; Raju, : Significance of nanoparticle’s radius, heat flux due to concentration gradient, and mass flux due to temperature gradient: The case of Water conveying copper nanoparticles. Scient Rep. 11, 1882 (2021)

    Google Scholar 

  44. heat transfer analysis: G. Sowmya, B. J. Gireesha, I. L. Animasaun & Nehad Ali Shah, Significance of buoyancy and Lorentz forces on water-conveying iron(III) oxide and silver nanoparticles in a rectangular cavity mounted with two heated fins. J. Therm. Anal. Calorim. 144, 2369–2384 (2021)

    Google Scholar 

  45. Hina, S.; Hayat, T.; Asghar, S.; Hendi, A.A.: Influence of compliant walls on peristaltic motion with heat/mass transfer and chemical reaction. Int. J. Heat Mass Transf. 55(13–14), 3386–3394 (2012 Jun 1)

    Google Scholar 

  46. Shehzad, S.A.; Hayat, T.; Qasim, M.; Asghar, S.: Effects of mass transfer on MHD flow of Casson fluid with chemical reaction and suction. Braz. J. Chem. Eng. 30(1), 187–195 (2013 Mar)

    Google Scholar 

  47. Hayat, T.; Asghar, S.; Tanveer, A.; Alsaedi, A.: Chemical reaction in peristaltic motion of MHD couple stress fluid in channel with Soret and Dufour effects. Results Phys. 1(10), 69–80 (2018 Sep)

    Google Scholar 

  48. Hayat, T.; Iqbal, R.; Tanveer, A.; Alsaedi, A.: Soret and Dufour effects in MHD peristalsis of pseudoplastic nanofluid with chemical reaction. J. Mol. Liq. 1(220), 693–706 (2016 Aug)

    Google Scholar 

  49. Kothandapani, M.; Prakash, J.: Effects of thermal radiation and chemical reactions on peristaltic flow of a Newtonian nanofluid under inclined magnetic field in a generalized vertical channel using homotopy perturbation method. Asia-Pac. J. Chem. Eng. 10(2), 259–272 (2015 Mar)

    Google Scholar 

  50. El-Shehawy, E.F.; El-Dabe, N.T.; El-Desoky, I.M.: Slip effects on the peristaltic flow of a non-Newtonian Maxwellian fluid. Acta Mech. 186(1), 141–159 (2006)

    MATH  Google Scholar 

  51. Ali N, Wang Y, Hayat T, Oberlack M. Slip effects on the peristaltic flow of a third grade fluid in a circular cylindrical tube. Journal of Applied Mechanics. 2009 Jan 1;76(1):011006.

  52. Javed, M.; Hayat, T.; Mustafa, M.; Ahmad, B.: Velocity and thermal slip effects on peristaltic motion of Walters-B fluid. Int. J. Heat Mass Transf. 1(96), 210–217 (2016 May)

    Google Scholar 

  53. Nayak MK, Prakash J, Tripathi D, Pandey VS, Shaw S, Makinde OD 2020 3D Bioconvective multiple slip flow of chemically reactive Casson nanofluid with gyrotactic micro-organisms. Heat Transfer Asian Res.

  54. Khan, M.I.; Alzahrani, F.; Hobiny, A.; Ali, Z.: Fully developed second order velocity slip Darcy-Forchheimer flow by a variable thicked surface of disk with entropy generation. Int. Commun. Heat Mass Transfer 117, 104778 (2020)

    Google Scholar 

  55. Khan, M.I.; Alzahrani, F.: Nonlinear dissipative slip flow of Jeffrey nanomaterial towards a curved surface with entropy generation and activation energy. Math. Comput. Simul. 185, 47–61 (2021)

    MathSciNet  MATH  Google Scholar 

  56. Khan, M.I.; Alzahrani, F.; Hobiny, A.; Ali, Z.: Modeling of Cattaneo-Christov double diffusions (CCDD) in Williamson nanomaterial slip flow subject to porous medium. J. Market. Res. 9, 6172–6177 (2020)

    Google Scholar 

  57. Khan, M.I.; Qayyum, S.; Hayat, T.; Khan, M.I.; Alsaedi, A.: Entropy optimization in flow of Williamson nanofluid in the presence of chemical reaction and Joule heating. Int. J. Heat Mass Transf. 133, 959–967 (2019)

    Google Scholar 

  58. Hayat, T.; Aslam, N.; Khan, M.I.; Khan, M.I.; Alsaedi, A.: Physical significance of heat generation/absorption and Soret effects on peristalsis flow of pseudoplastic fluid in an inclined channel. J. Mol. Liq. 275, 599–615 (2019)

    Google Scholar 

  59. Cebeci, T.; Bradshaw, P.: Physical and computational aspects of convective heat transfer. Springer, Newyork (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia for funding this work through research groups program under grant number R.G.P-1/178/42.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid Farooq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, A., Al-Khaled, K., Khan, M.I. et al. Electro-Osmotic Flow of Prandtl Nanofluids with Thermal and Solutal Slip Flow Constraints: Keller Box Simulations. Arab J Sci Eng 47, 8439–8456 (2022). https://doi.org/10.1007/s13369-021-06215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06215-0

Keywords

Navigation