Skip to main content

Advertisement

Log in

Throughput and Detection Probability of Interweave Cognitive Radio Networks Using Intelligent Reflecting Surfaces

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this paper, we derive a tight lower bound of the detection probability of the energy detector when intelligent reflecting surface (IRS) are used. The secondary source uses the energy detector to detect primary source activity. There is IRS between primary source and secondary source. The secondary sources compute the energy of the received signal from primary source and reflected on IRS. The proposed spectrum sensing algorithm using IRS offers 15, 21, 27, 33 dB gain with respect to conventional sensing without IRS for a number of reflectors \(K=8,16,32,64\). We also used IRS for data communication between primary source and destination as well as the communication between secondary nodes. The proposed primary and secondary networks of cognitive radio network (CRN) using IRS offer 23, 29, 36, 43, 49 and 56 dB gain with respect to conventional CRN without IRS for a number of reflectors \(K=8,16,32,64,128,256\). We show that the use of \(N=20,10,5\) symbols in energy detection offers up to 8.5, 7.7 and 4.7 dB gain with respect to a single symbol. We plot the miss detection probability \(P_\mathrm{md}\) versus the false alarm probability \(P_f\). For \(K=16\) reflectors, average SNR per bit \(E_b/N_0=-10\) dB and \(P_f=0.01\), \(P_\mathrm{md}=2 10^{-3}, 7 10^{-3}, 2.5 10^{-2}\) when \(N=20,10,5\) symbols are used in energy detection, whereas \(P_\mathrm{md}=0.45\) when a single symbol is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bryan G.; Pourranjbar A.; Kaddoum G.: Collaborative spectrum sensing in tactical wireless networks. ICC—IEEE International Conference on Communications (ICC) (2020)

  2. Xiangyue M.; Hazer I.; Brian K.: End-to-end deep learning-based compressive spectrum sensing in cognitive radio networks. ICC 2020–2020 IEEE International Conference on Communications (ICC), 21–24 (2020)

  3. Runze, W.; Mou, W.; Luokai, H.; Haijun, W.: Energy-efficient cooperative spectrum sensing scheme based on spatial correlation for cognitive. IEEE Access Internet Things 8(1), 139501–139511 (2020)

    Google Scholar 

  4. Mehran, G.; Fakharzadeh, M.: A fast soft decision algorithm for cooperative spectrum sensing. IEEE Trans. Circuits Syst. II Exp. Briefs 68(1), 241–245 (2020)

    Google Scholar 

  5. Patel, D.; Brijesh, S.; López-Benítez, M.: Improved likelihood ratio statistic-based cooperative spectrum sensing for cognitive radio. IET Commun. 14(11), 101–112 (2020)

    Article  Google Scholar 

  6. Qingqing, W.; Rui, Z.: Beamforming optimization for intelligent reflecting surface with discrete phase shifts. ICASSP (2019)

  7. Hongliang, Z.; Boya, D.; Lingyang, S.; Zhu, H.: Reconfigurable intelligent surfaces assisted communications with limited phase shifts: how many phase shifts are enough? IEEE Trans. Veh. Technol. 69(4), 4498–4502 (2020)

    Article  Google Scholar 

  8. Ertugrul, B.; Di Renzo, M.; De Rosny, J.; Debbah, M.; Alouini, M.S.; Zhang, R.: Wireless communications through reconfigurable intelligent surfaces. IEEE Access 7(1), 116753–116773 (2019)

    Google Scholar 

  9. Qingqing, W.; Rui, Z.: Towards smart and reconfigurable environment: intelligent reflecting surface aided wireless network. IEEE Commun. Mag. 58(1), 106–112 (2020)

    Article  Google Scholar 

  10. Ertugrul, B.: Reconfigurable intelligent surface-based index modulation: a new beyond mimo paradigm for 6G. IEEE Trans. Commun. 68(5), 3187–3196 (2020)

    Article  Google Scholar 

  11. Di Renzo M.: 6G wireless: wireless networks empowered by reconfigurable intelligent surfaces. In: Proceedings of the 2019 25th Asia-Pacific Conference on Communications (APCC)

  12. Chongwen, H.; Zappone, A.; Alexandropoulos, G.; Debbah, M.; Yuen, C.: Reconfigurable intelligent surfaces for energy efficiency in wireless communication. IEEE Trans. Wireless Commun. 18(8), 4157–4170 (2019)

    Article  Google Scholar 

  13. Huayan, G.; Ying-Chang, L.; Jie, C.; Larsson, E.: Weighted sum-rate maximization for reconfigurable intelligent surface aided wireless networks. IEEE Trans. Wireless Commun. 19(5), 3064–3076 (2020)

    Article  Google Scholar 

  14. Alexandropoulos G.; Vlachos E.: A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation. ICASSP IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2020)

  15. Thirumavalavan V.C.; Jayaraman T.S.: BER analysis of reconfigurable intelligent surface assisted downlink power domain NOMA system. In: Proceedings of the 2020 International Conference on COMmunication Systems and NETworkS (COMSNETS) (2020)

  16. Pradhan, C.; Li, A.; Song, L.; Vucetic, B.; Li, Y.: Hybrid precoding design for reconfigurable intelligent surface aided mmWave communication systems. IEEE Wireless Commun. Lett. 9(7), 1041–1045 (2020)

    Article  Google Scholar 

  17. Ying, K.; Gao, Z.; Lyu, S.; Wu, Y.; Wang, H.; Alouini, M.S.: GMD-based hybrid beamforming for large reconfigurable intelligent surface assisted millimeter-wave massive MIMO. IEEE Access 8(1), 19530–19539 (2020)

    Article  Google Scholar 

  18. Yang, L.; Guo, W.; Ansari, I.S.: Mixed dual-hop FSO-RF communication systems through reconfigurable intelligent surface. IEEE Commun. Lett. 24(7), 1558–1562 (2020)

    Article  Google Scholar 

  19. Di, B.; Zhang, H.; Li, L.; Song, L.; Li, Y.; Han, Z.: Practical hybrid beamforming with finite-resolution phase shifters for reconfigurable intelligent surface based multi-user communications. IEEE Trans. Veh. Technol. 69(4), 4565–4570 (2020)

    Article  Google Scholar 

  20. Zhao, W.; Wang, G.; Atapattu, S.; Tsiftsis, T.A.; Tellambura, C.: Is backscatter link stronger than direct link in reconfigurable intelligent surface-assisted system? IEEE Commun. Lett. 24(6), 1342–1346 (2020)

    Article  Google Scholar 

  21. Nadeem, Q.; Kammoun, A.; Chaaban, A.; Debbah, M.; Alouini, M.S.: Asymptotic max–min SINR analysis of reconfigurable intelligent surface assisted miso systems. IEEE Trans. Wireless Commun. 19(12), 7748–7764 (2020)

    Article  Google Scholar 

  22. Dai, L.; Wang, B.; Wang, M.; Yang, X.; Tan, J.; Shuangkaisheng, B.; Shenheng, X.; Fan, Y.; Zhi, C.; Di Renzo, M.; Chan-Byoung, C.; Hanzo, L.: Reconfigurable intelligent surface-based wireless communications: antenna design, prototyping, and experimental results. IEEE Access 8(1), 45913–45923 (2020)

    Article  Google Scholar 

  23. Makarfi, A.U.; Kharel, R.; Rabie, K.M.; Kaiwartya, O.; Li, X.; Do, D.T.: Reconfigurable intelligent surfaces based cognitive radio networks. IEEE Wireless Communications and Networking Conference Workshops (2021)

  24. He, J.; Kaiqiang, Y.; Yong, Z.; Yuanming, S.: Reconfigurable intelligent surface enhanced cognitive radio networks. In: IEEE 92nd Vehicular Technology Conference (VTC-Fall) (2020)

  25. Jie, Y.; Ying-Chang, L.; Jingon, J.; Gang, F.; Larsson, E. G.: Intelligent reflecting surface (IRS)-enhanced cognitive radio system. ICC, IEEE International Conference on Communications (ICC) (2020)

  26. Jie, Y.; Ying-Chang, L.; Jingon, J.; Gang, F.; Larsson, E.G.: Intelligent reflecting surface-assisted cognitive radio system. IEEE Trans. Commun. 69(1), 675–687 (2021)

    Article  Google Scholar 

  27. Lei, Z.; Yu, W.; Weige, T.; Ziyan, J.; Tiecheng, S.; Cunhua, P.: Intelligent reflecting surface aided MIMO cognitive radio systems. IEEE Trans. Veh. Technol. 69(10), 11445–11457 (2020)

    Article  Google Scholar 

  28. Dongfang, X.; Xianghao, Y.; Robert, S.: Resource allocation for intelligent reflecting surface-assisted cognitive radio networks. In: IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2020)

  29. Fatemeh, Z.; Mohammad, R.S.; Qingqing, W.: Vertical beamforming in intelligent reflecting surface-aided cognitive radio networks. IEEE Wireless Communications Letters, Early access article (2021)

  30. Lei, Z.; Cunhua, P.; Yu, W.; Hong, R.; Kezhi, W.; Arumugam, N.: Robust beamforming optimization for intelligent reflecting surface aided cognitive radio networks. GLOBECOM, IEEE Global Communications Conference (2020)

  31. Dong, L.; Hui-Ming, W.; Haitao, X.: Secure cognitive radio communication via intelligent reflecting surface. IEEE Trans. Commun. 69(7), 4678–4690 (2021)

    Article  Google Scholar 

  32. Limeng, D.; Hui-Ming, W.; Haitao, X.; Jiale, B.: Secure intelligent reflecting surface assisted MIMO cognitive radio transmission. Presented at the (2021)

  33. Proakis, J.: Digital Communications, 5th edn Mac Graw-Hill, New York (2007)

    MATH  Google Scholar 

  34. Alhamad, R.; Boujemaa, H.: Cooperative spectrum sensing with energy harvesting for Nakagami fading channels. Int. J. Sens. Netw. IJSNET 33(1), 1–7 (2020)

    Article  Google Scholar 

  35. Xi, Y.; Burr, A.; Wei, J.B.; Grace, D.: A general upper bound to evaluate packet error rate over quasi-static fading channels. IEEE Trans. Wireless Commun. 10(5), 1373–1377 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Alhamad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alhamad, R. Throughput and Detection Probability of Interweave Cognitive Radio Networks Using Intelligent Reflecting Surfaces. Arab J Sci Eng 47, 3281–3292 (2022). https://doi.org/10.1007/s13369-021-06211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06211-4

Keywords

Navigation