Skip to main content
Log in

Grey Relational Analysis-Based Multi-Response Optimization of Magnetic-Field-Assisted Powder-Mixed Electric Discharge Machining of Inconel 706

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the current study, an experimental investigation has been done using the hybrid magnetic-field-assisted powder-mixed electric discharge machining (MFAPMEDM) technique to enhance the process performance while machining Inconel 706 superalloy. Inconel 706 is a newly developed superalloy for aircraft applications. All the experimentation work was done according to Taguchi’s L9 orthogonal array (OA) to analyse the effect of controlled input parameters like peak current (Ip), pulse ‘ON’ (Pon) and pulse ‘OFF’ (Poff) duration on response parameters. Material removal rate (MRR), tool wear rate (TWR) and surface roughness (Ra) were selected as response parameters, and further multi-response optimization was done through grey relational analysis (GRA). GRA results revealed that Pon (62.84%) is the most influential input variable followed by Ip (28.64%) and Poff (8.50%) for controlling all the responses simultaneously. GRA optimized parameters were determined as Ip (5 A), Pon (50 µs) and Poff (20 µs). The surface morphology of the tool (cathode) and workpiece (anode) was assessed using field emission scanning electron microscopy (FESEM), which revealed the presence of partially melted crater boundaries/debris, micro-holes and debris on the surface. The results presented in this paper will help future researchers in studying the machining characteristics of the Inconel 706 superalloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of Data and Material

No supplementary data and material are needed for this research work.

Code Availability

Not applicable.

Abbreviations

Adj MS:

Adjusted mean square

Adj SS:

Adjusted sum of squares

ANOVA:

Analysis of variance

B4C:

Boron carbide

BBD:

Box–Behnken design

dB:

Decibels

Cu:

Copper

DF:

Degrees of freedom

DOE:

Design of experiments

EDM:

Electric discharge machining

EF:

Electric field

FESEM:

Field emission scanning electron microscope

FL :

Lorentz force

GA:

Genetic algorithm

Gr:

Graphite

GRA:

Grey relational analysis

GRC:

Grey relational coefficient

GRG:

Grey relational grade

Ip :

Peak current

MFAEDM:

Magnetic-field-assisted EDM

MFAPMEDM:

Magnetic-field-assisted PMEDM

MF:

Magnetic field

PC:

Powder concentration

MH:

Micro-hardness

MMCs:

Metal matrix composites

MRR:

Material removal rate

OA:

Orthogonal array

OC:

Overcut

OFAT:

One factor at a time

PMEDM:

Powder-mixed EDM

Pon :

Pulse ‘ON’ time

Poff :

Pulse ‘OFF’ time

Ra :

Surface roughness

RLT:

Recast layer thickness

RSM:

Response surface methodology

SCD:

Surface crack density

SiC:

Silicon carbide

S/N Ratio:

Signal/noise ratio

T:

Tesla

Ti:

Titanium

TLBO:

Teaching learning-based optimization

TWR:

Tool wear rate

W:

Tungsten

%:

Percentage of contribution

References

  1. Chen, Y.F.; Lin, Y.J.; Lin, Y.C.; Chen, S.L.; Hsu, L.R.: Optimization of electro discharge machining parameters on ZrO2 ceramic using the Taguchi method. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 224, 191–205 (2010)

    Google Scholar 

  2. Zhao, W.S.; Meng, Q.G.; Wang, Z.L.: The application of research on powder mixed EDM in rough machining. J. Mater. Process Technol. 129, 30–33 (2002)

    Article  Google Scholar 

  3. Choudhary, S.K.; Jadoun, R.S.: Current research issue, trend & applications of powder mixed dielectric electric discharge machining (PM-EDM): a review. Int. J. Eng. Sci. Res. Technol. 37, 335–358 (2014)

    Google Scholar 

  4. Marashi, H.; Sarhan, A.A.D.; Hamdi, M.: Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel. Appl. Surf. Sci. 357(A), 892–907 (2015)

    Article  Google Scholar 

  5. Pramanik, A.; Basak, A.K.; Islam, M.N.; Littlefair, G.: Electrical discharge machining of 6061 aluminium alloy. Trans Nonferr Met Soc China 25, 2866–2874 (2015)

    Article  Google Scholar 

  6. Bisaria, H.; Shandilya, P.: Machining of metal matrix composites by EDM and its variants: a review. Vienna DAAAM Int. Sci. Book Chapter 23, 267–282 (2015)

    Google Scholar 

  7. Sahu, S.K.; Datta, S.: Experimental studies on graphite powder-mixed electro-discharge machining of Inconel 718 super alloys: comparison with conventional electro-discharge machining. Proc. IMechE, Part E: J. Process Mech. Eng. 233, 384–402 (2018)

    Google Scholar 

  8. Rouniyar, A.K.; Shandilya, P.: Multi-Objective optimization using Taguchi and grey relational analysis on machining of Ti-6Al-4V alloy by powder mixed EDM process. Mater. Today Proc. 5(11), 23779–23788 (2018)

    Article  Google Scholar 

  9. Bhatt, G.; Batish, A.; Bhattacharya, A.: Experimental investigation of magnetic field assisted powder mixed electric discharge machining. Particul. Sci. Technol. 33, 246–256 (2015)

    Article  Google Scholar 

  10. Rouniyar, A.K.; Shandilya, P.: Fabrication and experimental investigation of magnetic field assisted powder mixed electrical discharge machining on machining of aluminium 6061 alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 233, 2283–2291 (2019)

    Article  Google Scholar 

  11. Bains, P.S.; Sidhu, S.S.; Payal, H.S.; Kaur, S.: Magnetic field influence on surface modifications in powder mixed EDM. SILICON 11, 415–423 (2019)

    Article  Google Scholar 

  12. Sharma, P.; Chakradhar, D.; Narendranath, S.: Evaluation of WEDM performance characteristics of Inconel 706 for turbine disk application. Mater. Des. 88, 558–566 (2015)

    Article  Google Scholar 

  13. Sharma, P.; Chakradhar, D.; Narendranath, S.: Effect of wire material on productivity and surface integrity of WEDM processed Inconel 706 for aircraft application. J. Mater. Eng. Perform. 25, 3672–3681 (2016)

    Article  Google Scholar 

  14. Sharma, P.; Chakradhar, D.; Narendanath, S.: Effect of wire diameter on surface integrity of wire electrical discharge machined Inconel 706 for gas turbine application. J. Manuf. Process. 24(1), 170–178 (2016)

    Article  Google Scholar 

  15. Muktinutalapati, N.R.: Materials for gas turbines—an overview. INTECH Open Access Publisher, London (2011)

    Google Scholar 

  16. Naskar, A.; Singh, B.B.; Choudhary, A.; Paul, S.: Effect of different grinding fluids applied in minimum quantity cooling-lubrication mode on surface integrity in cBN grinding of Inconel 718. J. Manuf. Process. 36, 44–50 (2018)

    Article  Google Scholar 

  17. Arunachalam, R.; Mannan, M.A.: Machinability of nickel-based high temperature alloys. Mach. Sci. Technol. 4(1), 127–168 (2000)

    Article  Google Scholar 

  18. Ezugwu, E.O.; Bonney, J.; Yamane, Y.: An overview of the machinability of aeroengine alloys. J. Mater. Process. Technol. 134(2), 233–253 (2003)

    Article  Google Scholar 

  19. Sharma, P.; Chakradhar, D.; Narendranath, S.: Analysis and optimization of WEDM performance characteristics of Inconel 706 for aerospace application. SILICON 10, 921–930 (2018)

    Article  Google Scholar 

  20. Zhong, M.; Sun, H.; Liu, W.; Zhu, X.; He, J.: Boundary liquation and interface cracking characterization in laser deposition of Inconel 738 on directionally solidified Ni based superalloy. Scr. Mater. 53(2), 159–164 (2005)

    Article  Google Scholar 

  21. Singh, J.; Jain, S.C.: Mechanical issues in laser and abrasive water jet cutting. J Min Met Mater Soc 47(1), 28–30 (1995)

    Article  Google Scholar 

  22. El-Hofy, H.: Advanced machining processes: non-traditional and hybrid machining processes. McGraw Hill Professional, New York (2005)

    Google Scholar 

  23. Rouniyar, A.K.; Shandilya, P.: Optimization of process parameters in magnetic field assisted powder mixed EDM of aluminium 6061 alloy. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. (2020). https://doi.org/10.1177/0954406220959108

    Article  Google Scholar 

  24. Rouniyar, A.K.; Shandilya, P.: Semi-empirical modeling and optimization of process parameters on overcut during MFAPM-EDM of Al6061 alloy. P I Mech. Eng. E-J. Pro. (2021). https://doi.org/10.1177/09544089211015890

    Article  Google Scholar 

  25. Wang, C.; Qiang, Z.: Comparison of Micro-EDM Characteristics of Inconel 706 between EDM Oil and an Al Powder-Mixed Dielectric Powder Size. Adv. Mater. Sci. Eng. 2019, 1–11 (2019)

    Google Scholar 

  26. Kumar, S.; Goud, M.M.; Suri, N.M.: Experimental investigation of magnetic-field-assisted electric discharge machining by silicon-based dielectric of Inconel 706 superalloy. Sādhanā 45(253), 1–8 (2020)

    Google Scholar 

  27. Kumar, S.; Goud, M.M.; Suri, N.M.: An Investigation of Magnetic-field-assisted EDM by Silicon and Boron Based Dielectric of Inconel 706. SILICON (2020). https://doi.org/10.1007/s12633-020-00776-9

    Article  Google Scholar 

  28. Sajeevan, R.; Dubey, A.K.: Machining quality comparison of Al-TiB2 composite using conventional EDM and magnetic force-assisted powder-mixed EDM. Adv. Mater. Process. Technol. (2021). https://doi.org/10.1080/2374068X.2021.1945299

    Article  Google Scholar 

  29. Kant, K.: Experimental investigation of magnetic field assisted on EDM process by using Taguchi method on EN-19 tool steel. Glob. J. Res. Eng. 15(3), 27–35 (2015)

    Google Scholar 

  30. Rouniyar, A.K.; Shandilya, P.: Study of surface crack density and microhardness of Aluminium 6061 alloy machined by EDM with mixed powder and assisted magnetic field. J. Micromanuf. (2021). https://doi.org/10.1177/25165984211016445

    Article  Google Scholar 

  31. Sajeevan, R.; Dubey, A.K.: Experimental Study on Indigenously developed Magnetic Force-assisted Powder-mixed EDM Set-up of Al based MMC. Adv. Mater. Process. Technol. (2021). https://doi.org/10.1080/2374068X.2021.1945309

    Article  Google Scholar 

  32. Rouniyar, A.K.; Shandilya, P.: Experimental investigation on recast layer and surface roughness on Aluminium 6061 alloy during magnetic field assisted powder mixed electrical discharge machining. J. Mater. Eng. Perform. 29, 7981–7992 (2020)

    Article  Google Scholar 

  33. Rouniyar, A.K.; Shandilya, P.: Experimental study on material removal rate of Al6061 machined with magnetic field assisted powder mixed electrical discharge machining. J. Phys. Conf. Ser. 1240(012018), 1–8 (2019)

    Google Scholar 

  34. Bains, P.S.; Sidhu, S.S.; Payal, H.S.: An investigation of magnetic-field-assisted EDM of composites. Mater. Manuf. Process. (2017). https://doi.org/10.1080/10426914.2017.1364857

    Article  Google Scholar 

  35. Bhattacharya, A.; Batish, A.; Bhatt, G.: Material transfer mechanism during magnetic field–assisted electric discharge machining of AISI D2, D3 and H13 die steel. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 229(1), 62–74 (2015)

    Article  Google Scholar 

  36. Rouniyar, A.K.; Shandilya, P.: Improvement in machined surface with the use of powder and magnetic field assisted on machining Aluminium 6061 alloy with EDM. IOP. Conf. Ser. Mater. Sci. Eng. 647(012002), 1–6 (2019). https://doi.org/10.1088/1757-899X/647/1/012002

    Article  Google Scholar 

  37. Technical Bulletin: Inconel alloy 706 (Publication number SMC- 091), Special Metals Corporation. Retrieved from: http://www.specialmetals.com/assets/documents/alloys/inconel/inconel-alloy-706.pdf Accessed 16 Oct 2018

  38. Kumar, S.; Goud, M.M.; Suri, N.M.: A comprehensive review on processing of Ni-Cr based superalloys through EDM and its variants. Eng. Appl. Sci. Res. 48(3), 324–339 (2021)

    Google Scholar 

  39. Kumar, M.; Vaishya, R.O.; Oza, A.D.; Suri, N.M.: Experimental investigation of Wire- Electrochemical Discharge Machining (WECDM) Performance characteristics for quartz material. SILICON 12, 2211–2220 (2020)

    Article  Google Scholar 

  40. Kumar, M.; Satsangi, P.S.: A study on machining performance of wire electric discharge grinding (WEDG) process during machining of tungsten alloy micro-tools. Sådhanå 46, 69 (2021)

    Google Scholar 

  41. Kumar, S.; Goud, M.M.; Suri, N.M.: A study to improve the machining characteristics in electrode discharge machining of Inconel 706 super alloys. Int. J. Tech. Innov. Mod. Eng. Sci. 5(12), 1–6 (2019)

    Google Scholar 

  42. Lin, Y.C.; Lee, H.S.: Machining characteristics of magnetic force-assisted EDM. Int. J. Mach. Tool Manu. 48(11), 1179–1186 (2008)

    Article  MathSciNet  Google Scholar 

  43. Julong, D.: Introduction to grey system theory. J. Grey Syst. 1, 1–24 (1989)

    MathSciNet  MATH  Google Scholar 

  44. Lin, C.L.; Lin, J.L.; Ko, T.C.: Optimisation of the EDM process based on the orthogonal array with fuzzy logic and grey relational analysis method. Int. J. Adv. Manuf. Technol. 19, 271–277 (2002)

    Article  Google Scholar 

  45. Lin, J.L.; Lin, C.L.: The use of the orthogonal array with grey relational analysis to optimize the electrical discharge machining process with multiple performance characteristics. J. Mache. Tools Manuf. 42, 237–244 (2002)

    Article  Google Scholar 

  46. Lin, Y.C.; Lee, H.S.: Optimization of machining parameters using magnetic-force-assisted EDM based on gray relational analysis. Int. J. Adv. Manuf. Technol. 42, 1052–1064 (2009)

    Article  Google Scholar 

  47. Tripathy, S.; Tripathy, D.K.: Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis. Eng. Sci. Technol. Int. J. 19, 62–70 (2016)

    Google Scholar 

  48. Sarikaya, M.; Gullu, A.: Multi-response optimization of MQL parameters using Taguchi based GRA in turning of difficult to cut alloy Haynes 25. J. Clean Prod. (2014). https://doi.org/10.1016/j.jclepro.2014.12.020

    Article  Google Scholar 

  49. Mian, S.H.; Umer, U.; Alkhalefah, H.: Optimization of scanning parameters in coordinate metrology using grey relational analysis and fuzzy logic. Math. Probl. Eng. (2019). https://doi.org/10.1155/2019/2085962

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out at the Department of Production and Industrial Engineering, Punjab Engineering College (Deemed to be University), Chandigarh. The authors would also like to acknowledge SAIF, Panjab University, Chandigarh, for providing the FESEM facility.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Sushil Kumar.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest.

Ethical Approval

Not applicable.

Consent to Participate

The authors give full consent to participate in this research work.

Consent for Publication

The authors give full consent for the publication of this research work.

Compliance with Ethical Standards

The authors ensure that accepted principles of ethical and professional conduct have been followed during this research work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Goud, M. & Suri, N.M. Grey Relational Analysis-Based Multi-Response Optimization of Magnetic-Field-Assisted Powder-Mixed Electric Discharge Machining of Inconel 706. Arab J Sci Eng 47, 8315–8339 (2022). https://doi.org/10.1007/s13369-021-06204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06204-3

Keyword

Navigation