Skip to main content

Advertisement

Log in

Performance Evaluation of Multilevel Inverter in Variable Speed SEIG-Based Wind Energy System

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The indirect vector control (IVC) technique for stand-alone self-excited induction generator (SEIG)-based wind energy system (WES) is presented in this work. IVC regulates the SEIG speed, torque, and DC voltage independently. Further, the proposed technique is analyzed with back-to-back two-level converter such as generator side converter (GSC) and load side converter (LSC) using space vector pulse width modulation (SVPWM) strategy. Two-level and three-level space vector pulse width modulation inverters are used, and the performance comparison between the two schemes is also discussed during step change of wind speed. The three-level inverter exhibits enhancement of SEIG voltage along with current, speed, DC voltage and torque in contrast to those obtained from two-level inverter. IVC for SEIG-based WES is implemented in MATLAB/SIMULINK software, and the experimental environment is set up for 4 kW system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

Abbreviations

\(\rho\) :

Air density

\(A\) :

Turbine swept area

\(R\) :

Length of the blade in meter

\(V_{w}\) :

Wind speed

\(\omega_{t}^{ * }\) :

Mechanical speed of turbine

\(\beta\) :

Pitch angle in degree

\(s\) :

Laplace operator

\(\omega_{r}\) :

Generator speed

\(p\) :

Pole pairs

\(T_{e}\) :

Torque developed

\(\omega_{{{\text{sl}}}}\) :

Slip speed

\(v_{{{\text{sd}}}}\), \(v_{{{\text{sq}}}}\) :

Stator voltages

\(i_{{{\text{sd}}}}\), \(i_{{{\text{sq}}}}\) :

Stator currents

\(i_{{{\text{rd}}}}\), \(i_{{{\text{rq}}}}\) :

Rotor currents

\(i_{{{\text{sm}}}}\) :

Magnetizing stator current

\(R_{s}\),\(R_{r}\) :

Winding resistances

\(L_{s}\) , \(L_{r}\) :

Self-inductances

L m :

Mutual inductance

\(\lambda_{{{\text{sd}}}} ,\lambda_{{{\text{sq}}}} ,\lambda_{{{\text{rd}}}} ,\lambda_{{{\text{rq}}}}\) :

Stator and rotor fluxes

\(i_{{{\text{ed}}}}\), \(i_{{{\text{eq}}}}\) :

Excitation capacitor currents

\(C_{{{\text{ed}}}}\), \(C_{{{\text{eq}}}}\) :

The value of excitation capacitor in \(d - q\) axes

\(\theta\) :

Transformation angle

\(\sigma\) :

Leakage factor

\(\tau_{r}\) :

Rotor time constant

GSC:

Generator side converter

IVC:

Indirect vector control

LSC:

Load side converter

MLI:

Multilevel inverter

PI:

Proportional integral

SEIG:

Self-excited induction generator

TLI:

Two-level load side inverter

WES:

Wind energy system

References

  1. Chatterjee, S.; Chatterjee, S.: Review on the techno-commercial aspects of wind energy conversion system. IET Renew. Power Gener. Rev. 12(14), 1581–1608 (2018)

    Article  Google Scholar 

  2. Sener, S.E.C.; Sharp, J.L.; Anctil, A.: Factors impacting diverging paths of renewable energy: a review. Renew. Sustain. Energy Rev. 81, 2335–2342 (2019)

    Article  Google Scholar 

  3. Xu, J.; Li, L.; Zheng, B.: Wind energy generation technological paradigm diffusion. Renew. Sustain. Energy Rev. 59, 436–449 (2016)

    Article  Google Scholar 

  4. Li, Z.; Wong, S.-C.; Tse, C.K.; Liu, X.: Controller saturation nonlinearity in doubly fed induction generator- based wind turbines under unbalanced grid conditions. Int. J. Circuit Theory Appl. 44(8), 1–18 (2015)

    Google Scholar 

  5. Dewangan, S.; Dyanamina, G.; Kumar, N.: Performance improvement of wind-driven self-excited induction generator using fuzzy logic controller. Int. Trans. Elect. Energy Syst. 29(8), 1–20 (2019)

    Article  Google Scholar 

  6. Ko, D.H.; Jeong, S.T.; Kim, Y.C.: Assessment of wind energy for small-scale wind power in Chuuk State, Micronesia. Renew. Sustain. Energy Rev. 52, 613–622 (2015)

    Article  Google Scholar 

  7. Saha, S.; Haque, M.E.; Mahmud, M.A.: Diagnosis and mitigation of sensor malfunctioning in a permanent magnet synchronous generator based wind energy conversion system. IEEE Trans. Energy Conv. 33(3), 938–948 (2018)

    Article  Google Scholar 

  8. Chandramohan, K.; Padmanaban, S.; Kalyanasundaram, R.; Blaabjerg, F.: Modeling of five-phase, self-excited induction generator for wind mill application. Elect. Power Comp. Syst. 46(3), 353–363 (2018)

    Article  Google Scholar 

  9. Ejiofor, O.S.; Candidus, E.U.; Victory, M.C.; Ugochukwu, E.C.: Wind energy dynamics of the separately excited induction generator. Int. J. Appl. Sci. 2(1), 22–32 (2019)

    Article  Google Scholar 

  10. Fernandes, J.F.P.; Perez-Sanchez, M.; da Silva, F.F.; Lopez-Jimenez, P.A.; Ramos, H.M.; Branco, P.J.C.: Optimal energy efficiency of isolated PAT sytems by SEIG excitation tuning. Energy Conv. Manag. 183(1), 391–405 (2019)

    Article  Google Scholar 

  11. Jha, D.; Thakur, A.: Novel control strategy for standalone wind energy conversion system supplying power to isolated DC Load. Majlesi J. Elect. Eng. 13(1), 19–29 (2019)

    Google Scholar 

  12. Kalla, U.K.; Singh, B.; Murthy, S.S.: Modified electronic load controller for constant frequency operation with voltage regulation of small hydro-driven single-phase SEIG. IEEE Trans. Ind. Appl. 52(4), 2789–2800 (2016)

    Article  Google Scholar 

  13. Mosaad, M.I.: Model reference adaptive control of STATCOM for grid integration of wind energy systems. IET Elect. Power Appl. 12(5), 605–613 (2018)

    Article  Google Scholar 

  14. Chilipi, R.R.; Singh, B.; Murthy, S.S.: Performance of a self-excited induction generator with DSTATCOM-DTC drive-based voltage and frequency controller. IEEE Trans. Energy Conv. 29(3), 545–557 (2014)

    Article  Google Scholar 

  15. Chauhan, P.J.; Chatterjee, J.K.: A Novel speed adaptive stator current compensator for voltage and frequency control of standalone SEIG feeding three-phase four-wire system. IEEE Trans. Sustain. Energy 10(1), 248–256 (2019)

    Article  Google Scholar 

  16. Arthishri, K.; Kumaresan, N.; Gounden, N.A.: Analysis and application of three-phase SEIG with power converters for supplying single-phase grid from wind energy. IEEE Syst. J. 13(2), 1813–1822 (2019)

    Article  Google Scholar 

  17. dos Santos, T.H.; Goedtel, A.; da Silva, S.A.O.; Suetake, M.: Scalar control of an induction motor using a neural sensorless technique. Elect. Power Syst. Res. 108, 322–330 (2014)

    Article  Google Scholar 

  18. Jaladi, K.K.; Sandhu, K.S.: DC-link transient improvement of SMC-based hybrid control of DFIG-WES under asymmetrical grid faults. Int. Trans. Elect. Energy Syst. 28(12), 1–27 (2018)

    Article  Google Scholar 

  19. Jaladi, K.K.; Sandhu, K.S.: A new hybrid control scheme for minimizing torque and flux ripple for DFIG-based WES under random change in wind speed. Int. Trans. Elect. Energy Syst. 29(4), 1–15 (2019)

    Article  Google Scholar 

  20. Bašić, M.; Vukadinović, D.; Grgić, I.: Compensation of stray load and iron losses in small vector-controlled induction generators. IEEE Trans. Energy Conv. 1, 9 (2019)

    Google Scholar 

  21. Baˇ, M.; Vukadinović, D.: Online efficiency optimization of a vector controlled self-excited induction generator. IEEE Trans. Energy Conv. 31(1), 373–380 (2016)

    Article  Google Scholar 

  22. Pal, A.; Das, S.; Chattopadhyay, A.K.: An improved rotor flux space vector based MRAS for field oriented control of induction motor drives. IEEE Trans. Power Elect. 33(6), 5131–5141 (2018)

    Article  Google Scholar 

  23. Chinmaya, K.A.; Singh, G.K.: Performance evaluation of multiphase induction generator in stand-alone and grid-connected wind energy conversion system. IET Renew. Power Gener. 12(7), 823–831 (2018)

    Article  Google Scholar 

  24. Tatte, Y.N.; Aware, M.V.: Torque ripple and harmonic current reduction in a three-level inverter-fed direct-torque-controlled five-phase induction motor. IEEE Trans. Ind. Elect. 64(7), 5265–5275 (2017)

    Article  Google Scholar 

  25. Maswood, A.I.; Gabriel, O.H.P.; Al, A.E.: Comparative study of multilevel inverters under unbalanced voltage in a single DC link. IET Power Elect. 6(8), 1530–1543 (2013)

    Article  Google Scholar 

  26. Azeem, H.; Yellasiri, S.; Jammala, V.; Naik, B.S.; Panda, A.K.: A Fuzzy logic based switching methodology for a cascaded H-bridge multi-level inverter. IEEE Trans. Power Elect. 34(10), 9360–9364 (2019)

    Article  Google Scholar 

  27. Boulouiha, H.M.; Allali, A.; Laouer, M.; Tahri, A.; Denaï, M.; Draou, A.: Direct torque control of multilevel SVPWM inverter in variable speed SCIG-based wind energy conversion system. Renew. Energy 80, 140–152 (2015)

    Article  Google Scholar 

  28. Bandy, K.; Stumpf, P.: Model predictive torque control for multilevel inverter fed induction machines using sorting networks. IEEE Access 9, 13800–13813 (2021)

    Article  Google Scholar 

  29. Xiao, D.; Alam, K.S.; Osman, I.; Akter, M.P.; Shakib, S.M.S.I.; Rahman, M.F.: Low complexity model predictive flux control for three-level neutral-point clamped inverter-fed induction motor drives without weighting factor. IEEE Trans. Ind. Appl. 56(6), 6496–6506 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The current work is supported by the Ministry of Human Resource Development, Government of India, through a Ph.D. scholarship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Dewangan.

Appendix

Appendix

Parameters of induction machine

Parameters of IGBT inverter

Parameters of converter

P = 4000 W

Ron = 1 mΩ

Ron = 0.001 Ω

V = 400 V

RS = 105 Ω

Vf = 0.8 V

f = 50 Hz

 

Lon = 1 mH

RS = 0.035 pu

  

N = 1430 rpm

  

H.P = 5.4

  

Lls = 0.045 pu

  

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewangan, S., Vadhera, S. Performance Evaluation of Multilevel Inverter in Variable Speed SEIG-Based Wind Energy System. Arab J Sci Eng 47, 3311–3324 (2022). https://doi.org/10.1007/s13369-021-06197-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06197-z

Keywords

Navigation