Skip to main content
Log in

Periodical Analysis of Convective Heat Transfer Along Electrical Conducting Cone Embedded in Porous Medium

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present contribution deals with the study of periodical behavior of convective heat transfer along the electrical conducting cone embedded in porous medium. The unsteady proposed problem is formulated in terms of coupled partial differential equations subjected to the prescribed boundary conditions. The dimensioned equations are transformed into dimensionless form by using appropriate dimensionless variables. Later, extensive simulations are performed by using the implicit finite difference method. The physical properties such as velocity profile, temperature profile and magnetic field profile along with periodic shear tress, rate of heat transfer and the current density for different controlling parameters involved in the heat and fluid flow model are plotted. Furthermore, by keen inspection the physical effects of assorted parameters on the material properties with physical reasoning are discussed deliberately. The main novelty of this work is based on first we secure solutions for steady part and then these results are used in unsteady part to calculate periodical behavior of quantities such as shear tress, heat transfer and the current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chamkha, A.J.: MHD-free convection from a vertical plate embedded in a thermally stratified porous medium with Hall effects. Appl. Math. Model. 21(10), 603–609 (1997)

    Article  MATH  Google Scholar 

  2. Chamkha, A.J.: Magnetohydrodynamic mixed convection from a rotating cone embedded in a porous medium with heat generation. J. Porous Media 2(1), 87–106 (1999)

    Article  MATH  Google Scholar 

  3. Chamkha, A.J.; Khaled, A.R.: Hydromagnetic simultaneous heat and mass transfer by mixed convection from a vertical plate embedded in a stratified porous medium with thermal dispersion effects. Heat Mass Transf. 36(1), 63–70 (2000)

    Article  Google Scholar 

  4. Takhar, H.S.; Chamkha, A.J.; Nath, G.: Combined heat and mass transfer along a vertical moving cylinder with a free stream. Heat Mass Transf. 36(3), 237–246 (2000)

    Article  Google Scholar 

  5. Yih, K.A.: Radiation effect on mixed convection over an isothermal cone in porous media. Heat Mass Transf. 37(1), 53–57 (2001)

    Article  MathSciNet  Google Scholar 

  6. Takhar, H.S.; Chamkha, A.J.; Nath, G.: Unsteady mixed convection flow from a rotating vertical cone with a magnetic field. Heat Mass Transf. 39(4), 297–304 (2003)

    Article  Google Scholar 

  7. Anilkumar, D.; Roy, S.: Unsteady mixed convection flow on a rotating cone in a rotating fluid. Appl. Math. Comput. 155(2), 545–561 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Al-Odat, M.Q.; Al-Hussien, F.M.S.; Damseh, R.A.: Influence of radiation on mixed convection over a wedge in non-Darcy porous medium. Forsch. Ingenieurwes. 69(4), 209 (2005)

    Article  Google Scholar 

  9. Chamkha, A.J.; Al-Mudhaf, A.: Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects. Int. J. Therm. Sci. 44(3), 267–276 (2005)

    Article  Google Scholar 

  10. Damseh, R.A.: Magnetohydrodynamics-mixed convection from radiate vertical isothermal surface embedded in a saturated porous media. J. Appl. Mech. 73, 54–59 (2006)

    Article  MATH  Google Scholar 

  11. Mahood, M.; Asghar, S.; Hossain, M.A.: Hydromagnetic flow of viscous incompressible fluid past a wedge with permeable surface. ZAMM. Z. Angew. Math 89(3), 174–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mahdy, A.; Chamkha, A.J.; Baba, Y.: Double-diffusive convection with variable viscosity from a vertical truncated cone in porous media in the presence of magnetic field and radiation effects. Comput. Math. Appl. 59(12), 3867–3878 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Modather, M.; Chamkha, A.: An analytical study of MHD heat and mass transfer oscillatory flow of a micropolar fluid over a vertical permeable plate in a porous medium. Turk. J. Eng. Environ. Sci. 33(4), 245–258 (2010)

    Google Scholar 

  14. Patil, P.M.; Pop, I.: Effects of surface mass transfer on unsteady mixed convection flow over a vertical cone with chemical reaction. Heat Mass Transf. 47(11), 1453–1464 (2011)

    Article  Google Scholar 

  15. Imran, S.M.; Asghar, S.; Mushtaq, M.: Mixed convection flow over an unsteady stretching surface in a porous medium with heat source. Math. Probl. Eng. (2012). https://doi.org/10.1155/2012/485418

    Article  MathSciNet  MATH  Google Scholar 

  16. Ashraf, M.; Asghar, S.; Hossain, A.: Fluctuating hydromagnetic natural convection flow past a magnetized vertical surface in the presence of thermal radiation. Therm. Sci. 16(4), 1081–1096 (2012)

    Article  Google Scholar 

  17. Ashraf, M.; Asghar, S.; Hossain, M.A.: Computational study of combined effects of conduction-radiation and hydromagnetics on natural convection flow past magnetized permeable plate. Appl. Math. Mech. 33(6), 731–748 (2012)

    Article  MathSciNet  Google Scholar 

  18. Kasim, A.R.M.; Mohammad, N.F.; Aurangzaib, A.; Shafie, S.: MHD mixed convection flow of viscoelastic fluid embedded in porous medium. Malays. J. Fundam. Appl. Sci. 1, 1–1 (2013). https://doi.org/10.11113/mjfas.v9n1.77

    Article  Google Scholar 

  19. Nadeem, S.; Saleem, S.: Unsteady mixed convection flow of nanofluid on a rotating cone with magnetic field. Appl. Nanosci. 4(4), 405–414 (2014)

    Article  Google Scholar 

  20. KAYA, A. : Effects of radiation–conduction interaction on mixed convection from a vertical cone embedded in a porous media with high porosity. Turk. J. Eng. Environ. Sci. 38(1), 51–63 (2014)

    Article  Google Scholar 

  21. Raju, C.S.; Jayachandraabu, M.; Sandeep, N.: Chemically reacting radiative MHD Jeffrey nanofluid flow over a cone in porous medium. Int. J. Eng. Res. Afr. 19, 75–90 (2016)

    Article  Google Scholar 

  22. Aruna, G.; Varma, S.V.; Raju, R.S.: Combined influence of Soret and Dufour effects on unsteady hydromagnetic mixed convective flow in an accelerated vertical wavy plate through a porous medium. Int. J. Adv. Appl. Math. Mech. 3(1), 122–134 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Abdou, M.M.M.; El-Zahar, E.R.; Chamkha, A.J.: MHD mixed convection stagnation-point flow of a viscoelastic fluid towards a stretching sheet in a porous medium with heat generation and radiation. Can. J. Phys. 93(5), 532–541 (2015)

    Article  Google Scholar 

  24. Metri, P.G.; Metri, P.G.; Abel, S.; Silvestrov, S.: Heat transfer in MHD mixed convection viscoelastic fluid flow over a stretching sheet embedded in a porous medium with viscous dissipation and non-uniform heat source/sink. Proc. Eng. 157(40), 309–316 (2016)

    Article  MATH  Google Scholar 

  25. Malik, M.Y.; Jamil, H.; Salahuddin, T.; Bilal, S.; Rehman, K.U.; Mustafa, Z.: Mixed convection dissipative viscous fluid flow over a rotating cone by way of variable viscosity and thermal conductivity. Res. Phys. 6, 1126–1135 (2016)

    Google Scholar 

  26. Sudhagar, P.; Kameswaran, P.K.; Rushi Kumar, B.: Magnetohydrodynamics mixed convection flow of a nanofluid in an isothermal vertical cone. J. Heat Transf. (2017). https://doi.org/10.1115/1.4035039

    Article  Google Scholar 

  27. Raju, A.M.M., Raju, G.S.S., Mallikarjuna, B.: Unsteady quadratic convective flow of a rotating non-Newtonian fluid over a rotating cone in a porous medium. Int. J. Adv. Res. Comput. Sci. 8(6), 101–107 (2017)

    Google Scholar 

  28. Ullah, I.; Shafie, S.; Khan, I.: MHD mixed convection flow of casson fluid over a moving wedge saturated in a porous medium in the presence of chemical reaction and convective boundary conditions. J. Sci. Technol. 9(3), 131–139 (2017)

    Google Scholar 

  29. Ashraf, M.; Fatima, A.; Gorla, R.S.R.: Periodic momentum and thermal boundary layer mixed convection flow around the surface of a sphere in the presence of viscous dissipation. Can. J. Phys. 95(10), 976–986 (2017)

    Article  Google Scholar 

  30. Reddy, P.S.; Sreedevi, P.; Chamkha, A.J.: MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu–water and Ag–water nanofluid with chemical reaction. Powder Technol. 100(307), 46–55 (2017)

    Article  Google Scholar 

  31. Ashraf, M.; Fatima, A.: Numerical simulation of the effect of transient shear stress and rate of heat transfer around different positions of sphere in the presence of viscous dissipation. J. Heat Transf. 140(6), 701–712 (2018)

    Article  Google Scholar 

  32. Hanif, H.; Khan, I.; Shafie, S.: MHD natural convection in cadmium telluride nanofluid over a vertical cone embedded in a porous medium. Phys. Scr. 94(12), 125208 (2019)

    Article  Google Scholar 

  33. Izadi, M.; Javanahram, M.; Zadeh, S.M.H.; Jing, D.: Hydrodynamic and heat transfer properties of magnetic fluid in porous medium considering nanoparticle shapes and magnetic field-dependent viscosity. Chin. J. Chem. Eng. 28(2), 329–339 (2020)

    Article  Google Scholar 

  34. Hanif, H.; Khan, I.; Shafie, S.: Heat transfer exaggeration and entropy analysis in magneto-hybrid nanofluid flow over a vertical cone: a numerical study. J. Thermal Anal. Calorimetry 141, 1–17 (2020)

    Google Scholar 

  35. Rajput, G.R.; Jadhav, B.P.; Salunkhe, S.N.: Magnetohydrodynamics boundary layer flow and heat transfer in porous medium past an exponentially stretching sheet under the influence of radiation. Heat Transf. 49(5), 2906–2920 (2020)

    Article  Google Scholar 

  36. Krishna, M.V.; Ahamad, N.A.; Chamkha, A.J.: Hall and ion slip effects on unsteady MHD free convective rotating flow through a saturated porous medium over an exponential accelerated plate. Alex. Eng. J. 59(2), 565–577 (2020)

    Article  Google Scholar 

  37. Krishna, M.V.; Chamkha, A.J.: Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int. Commun. Heat Mass Transf. 113(2020), 104494 (2020)

    Article  Google Scholar 

  38. Krishna, M.V.; Ahamad, N.A.; Chamkha, A.J.: Hall and ion slip impacts on unsteady MHD convective rotating flow of heat generating/absorbing second grade fluid. Alex. Eng. J. 60(1), 845–858 (2021)

    Article  Google Scholar 

  39. Wakif, A.; Chamkha, A.; Thumma, T.; Animasaun, I.L.; Sehaqui, R.: Thermal radiation and surface roughness effects on the thermo-magneto-hydrodynamic stability of alumina–copper oxide hybrid nanofluids utilizing the generalized Buongiorno’s nanofluid model. J. Therm. Anal. Calorimetry 143(2), 1201–1220 (2021)

    Article  Google Scholar 

  40. Ramesh, G.K.; Shehzad, S.A.; Rauf, A.; Chamkha, A.J.: Heat transport analysis of aluminum alloy and magnetite graphene oxide through permeable cylinder with heat source/sink. Phys. Scr. 95(9), 095203 (2020)

    Article  Google Scholar 

  41. Kumar, K.G.; Reddy, M.G.; Sudharani, M.V.V.N.L.; Shehzad, S.A.; Chamkha, A.J.: Cattaneo–Christov heat diffusion phenomenon in Reiner–Philippoff fluid through a transverse magnetic field. Phys. A Stat. Mech. Appl. 541, 123330 (2020)

    Article  MATH  Google Scholar 

  42. Zhang, L.; Bhatti, M.M.; Marin, M.; Mekheimer, S.; K. : Entropy analysis on the blood flow through anisotropically tapered arteries filled with magnetic zinc–oxide (ZnO) nanoparticles. Entropy 22(10), 1070 (2020)

    Article  Google Scholar 

  43. Ali, Z.; Zeeshan, A.; Bhatti, M.M.; Hobiny, A.; Saeed, T.: Insight into the dynamics of Oldroyd-B fluid over an upper horizontal surface of a paraboloid of revolution subject to chemical reaction dependent on the first-order activation energy. Arab. J. Sci. Eng. 46(6), 6039–6048 (2021)

    Article  Google Scholar 

  44. Abo-Elkhair, R.E.; Bhatti, M.M.; Mekheimer, K.S.: Magnetic force effects on peristaltic transport of hybrid bio-nanofluid (AuCu nanoparticles) with moderate Reynolds number: an expanding horizon. Int. Commun. Heat Mass Transf. 123, 105228 (2021)

    Article  Google Scholar 

  45. Ashraf, M.; Ullah, Z.; Zia, S.; Alharbi, S.O.; Baleanu, D.; Khan, I.: Analysis of the physical behavior of the periodic mixed-convection flow around a non-conducting horizontal circular cylinder embedded in a porous medium. J. Math. (2021). https://doi.org/10.1155/2021/8839146

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Rashad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyas, A., Ashraf, M. & Rashad, A.M. Periodical Analysis of Convective Heat Transfer Along Electrical Conducting Cone Embedded in Porous Medium. Arab J Sci Eng 47, 8177–8188 (2022). https://doi.org/10.1007/s13369-021-06191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06191-5

Keywords

Navigation