Skip to main content

Advertisement

Log in

An Exploratory Study on Alkali-Activated Slag Blended with Microsize Metakaolin Particles Under the Effect of Seawater Attack and Tidal Zone

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In general, building materials exposed to the marine environment are more prone to deteriorates than others. There are three main zones of the marine environment named atmospheric zone, tidal zone and submerged zone. This article investigated the effect of different curing conditions named water curing, air curing, seawater curing and wet/dry curing on the compressive strength and microstructure properties of alkali-activated slag (AAS) pastes with and without microsize metakaolin (mK) particles over a period of up to one year. The wet/dry curing was used to simulate the effect of the tidal zone, of which the specimens were submerged in seawater for 18 h followed by 6 h of air drying per day. The slag was partially replaced with mK at ratios fluctuated from 0 to 12% with a step of 2%, by weight. A fixed concentration of sodium silicate was used as an alkaline activator. After initial curing, the specimens were exposed to the aforementioned treatment conditions for 3, 6 and 12 M. The phase composition and microscopic structure of the neat AAS and AAS/mK samples were tested by X-ray diffraction (XRD), thermogravimetric analysis (TGA/DTG) and scanning electron microscopy (SEM). The results showed that the deterioration in the specimens exposed to the simulated tidal zone is more severe than those submerged in seawater. The neat AAS pastes showed better strength and microstructure than those blended with mK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Wang, D.; Noguchi, T.; Nozaki, T.: Increasing efficiency of carbon dioxide sequestration through high temperature carbonation of cement-based materials. J. Clean. Prod. 238, 117980 (2019)

    Article  Google Scholar 

  2. I. IPCC: Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  3. Quéré, C.; Andrew, R.; Friedlingstein, P.; Sitch, S.; Hauck, J.; Pongratz, J.; Pickers, P.; Ivar Korsbakken, J.; Peters, G.; Canadell, J.: Global carbon budget 2018. Earth Syst. Sci. Data 10(4), 2141–2194 (2018)

    Article  Google Scholar 

  4. Abriyantoro, D.; Dong, J.; Hicks, C.; Singh, S.P.: A stochastic optimisation model for biomass outsourcing in the cement manufacturing industry with production planning constraints. Energy 169, 515–526 (2019)

    Article  Google Scholar 

  5. Rashad, A.M.: An overview on rheology, mechanical properties and durability of high-volume slag used as a cement replacement in paste, mortar and concrete. Constr. Build. Mater. 187, 89–117 (2018)

    Article  Google Scholar 

  6. Rashad, A.M.: A brief on high-volume Class F fly ash as cement replacement—a guide for Civil Engineer. Int. J. Sustain. Built Environ. 4(2), 278–306 (2015)

    Article  Google Scholar 

  7. Rashad, A.M.: A comprehensive overview about the influence of different additives on the properties of alkali-activated slag—a guide for Civil Engineer. Constr. Build. Mater. 47, 29–55 (2013)

    Article  Google Scholar 

  8. Rashad, A.M.: Alkali-activated metakaolin: a short guide for Civil Engineer—an overview. Constr. Build. Mater. 41, 751–765 (2013)

    Article  Google Scholar 

  9. Rashad, A.M.: A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater. Des. 53, 1005–1025 (2014)

    Article  Google Scholar 

  10. Islam, M.; Mondal, B.; Islam, M.: Effect of sea salts on structural concrete in a tidal environment. Aust. J. Struct. Eng. 10(3), 237–252 (2010)

    Article  Google Scholar 

  11. Zhang, Y.; Jin, W.-L.: Distribution of chloride accumulation in marine tidal zone along altitude. ACI Mater. J. 108(5), 1 (2011)

    Google Scholar 

  12. Rashad, A.M.; Ouda, A.S.; Sadek, D.M.: Behavior of alkali-activated metakaolin pastes blended with quartz powder exposed to seawater attack. J. Mater. Civ. Eng. 30(8), 04018159 (2018)

    Article  Google Scholar 

  13. Slaty, F.; Khoury, H.; Rahier, H.; Wastiels, J.: Durability of alkali activated cement produced from kaolinitic clay. Appl. Clay Sci. 104, 229–237 (2015)

    Article  Google Scholar 

  14. Zhang, Z.; Yao, X.; Zhu, H.: Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties. Appl. Clay Sci. 49(1–2), 1–6 (2010)

    Google Scholar 

  15. Li, X.; Rao, F.; Song, S.; Ma, Q.: Effect of cristobalite on the mechanical behaviour of metakaolin-based geopolymer in artificial seawater. Adv. Appl. Ceram. 119(1), 29–36 (2020)

    Article  Google Scholar 

  16. Fernández-Jiménez, A.; García-Lodeiro, I.; Palomo, A.: Durability of alkali-activated fly ash cementitious materials. J. Mater. Sci. 42(9), 3055–3065 (2007)

    Article  Google Scholar 

  17. Puertas, F.; Gutierrez, R.; Fernández-Jiménez, A.; Delvasto, S.; Maldonado, J.: Alkaline cement mortars. Chemical resistance to sulfate and seawater attack. Mater. Constr. 52(267), 55–71 (2002)

    Article  Google Scholar 

  18. Zuhua, Z.; Xiao, Y.; Huajun, Z.: Potential application of geopolymers as protection coatings for marine concrete: II. Microstructure and anticorrosion mechanism. Appl. Clay Sci. 49, 7–12 (2010)

    Article  Google Scholar 

  19. Reddy, D.V.; Edouard, J.-B.; Sobhan, K.: Durability of fly ash–based geopolymer structural concrete in the marine environment. J. Mater. Civ. Eng. 25(6), 781–787 (2013)

    Article  Google Scholar 

  20. Rashad, A.M.; Shokry, K.M.: An exploratory study on alkali-activated slag paste blended with micro metakaolin subjected to thermal loads. Int. J. Mater. Eng. Technol. 13(2), 187 (2015)

    Article  Google Scholar 

  21. Rashad, A.M.: Performance of autoclaved alkali-activated metakaolin pastes blended with micro-size particles derivative from dehydroxylation of kaolinite. Constr. Build. Mater. 248, 118671 (2020)

    Article  Google Scholar 

  22. Rashad, A.M.; Sadek, D.M.: An investigation on Portland cement replaced by high-volume GGBS pastes modified with micro-sized metakaolin subjected to elevated temperatures. Int. J. Sustain. Built Environ. 6(1), 91–101 (2017)

    Article  Google Scholar 

  23. Rashad, A.M.: Investigation on high-volume fly ash pastes modified with micro-size metakaolin subjected to high temperatures. J. Central South Univ. 27(1), 231–241 (2020)

    Article  Google Scholar 

  24. Rashad, A.M.: Metakaolin as cementitious material: history, scours, production and composition—a comprehensive overview. Constr. Build. Mater. 41, 303–318 (2013)

    Article  Google Scholar 

  25. Rashad, A.M.; Hassan, A.A.; Zeedan, S.R.: An investigation on alkali-activated Egyptian metakaolin pastes blended with quartz powder subjected to elevated temperatures. Appl. Clay Sci. 132, 366–376 (2016)

    Article  Google Scholar 

  26. Kenne Diffo, B.; Elimbi, A.; Cyr, M.; Dika Manga, J.; Tchakoute Kouamo, H.: Effect of the rate of calcination of kaolin on the properties of metakaolin-based geopolymers. J. Asian Ceram. Soc. 3(1), 130–138 (2015)

    Article  Google Scholar 

  27. Rashad, A.M.; Zeedan, S.R.; Hassan, A.A.: Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes. Constr. Build. Mater. 102, 811–820 (2016)

    Article  Google Scholar 

  28. Memon, A.; Radin, S.; Zain, M.F.M.; Trottier, J.-F.: Effects of mineral and chemical admixtures on high-strength concrete in seawater. Cem. Concr. Res. 32(3), 373–377 (2002)

    Article  Google Scholar 

  29. Rashad, A.M.; Ouda, A.S.: Effect of tidal zone and seawater attack on high-volume fly ash pastes enhanced with metakaolin and quartz powder in the marine environment. Microporous Mesoporous Mater. 324, 111261 (2021)

    Article  Google Scholar 

  30. Bernal, S.A.; Provis, J.L.; Rose, V.; De Gutierrez, R.M.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement Concr. Compos. 33(1), 46–54 (2011)

    Article  Google Scholar 

  31. Kramar, S.; Šajna, A.; Ducman, V.: Assessment of alkali activated mortars based on different precursors with regard to their suitability for concrete repair. Constr. Build. Mater. 124, 937–944 (2016)

    Article  Google Scholar 

  32. Deb, P.S.; Nath, P.; Sarker, P.K.: The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater. Des. 62, 32–39 (2014)

    Article  Google Scholar 

  33. Ye, H.; Fu, C.; Yang, G.: Alkali-activated slag substituted by metakaolin and dolomite at 20 and 50 °C. Cem. Concr. Compos. 105, 103442 (2020)

    Article  Google Scholar 

  34. Li, Z.; Nedeljković, M.; Chen, B.; Ye, G.: Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin. Cem. Concr. Res. 122, 30–41 (2019)

    Article  Google Scholar 

  35. Akçaözoğlu, S.; Ulu, C.: Recycling of waste PET granules as aggregate in alkali-activated blast furnace slag/metakaolin blends. Constr. Build. Mater. 58, 31–37 (2014)

    Article  Google Scholar 

  36. Burciaga-Díaz, O.; Escalante-García, J.I.; Arellano-Aguilar, R.; Gorokhovsky, A.: Statistical analysis of strength development as a function of various parameters on activated metakaolin/slag cements. J. Am. Ceram. Soc. 93(2), 541–547 (2010)

    Article  Google Scholar 

  37. Burciaga-Díaz, O.; Gómez-Zamorano, L.Y.; Escalante-García, J.I.: Influence of the long term curing temperature on the hydration of alkaline binders of blast furnace slag-metakaolin. Constr. Build. Mater. 113, 917–926 (2016)

    Article  Google Scholar 

  38. Li, Y.; Sun, Y.: Preliminary study on combined-alkali–slag paste materials. Cem. Concr. Res. 30(6), 963–966 (2000)

    Article  Google Scholar 

  39. Dong, M.; Elchalakani, M.; Karrech, A.: Curing conditions of alkali-activated fly ash and slag mortar. J. Mater. Civ. Eng. 32(6), 04020122 (2020)

    Article  Google Scholar 

  40. Qureshi, M.N.; Ghosh, S.: Effect of curing conditions on the compressive strength and microstructure of alkali-activated GGBS paste. Int. J. Eng. Sci. Invent. 2(2), 24–31 (2013)

    Google Scholar 

  41. Karim, M.R.; Hossain, M.M.; Elahi, M.M.A.; Zain, M.F.M.: Effects of source materials, fineness and curing methods on the strength development of alkali-activated binder. J. Build. Eng. 29, 101147 (2020)

    Article  Google Scholar 

  42. Collins, F.; Sanjayan, J.: Microcracking and strength development of alkali activated slag concrete. Cem. Concr. Compos. 23(4–5), 345–352 (2001)

    Article  Google Scholar 

  43. Palomo, A.; Blanco-Varela, M.T.; Granizo, M.; Puertas, F.; Vazquez, T.; Grutzeck, M.: Chemical stability of cementitious materials based on metakaolin. Cem. Concr. Res. 29(7), 997–1004 (1999)

    Article  Google Scholar 

  44. Li, X.; Rao, F.; Song, S.; Ma, Q.: Deterioration in the microstructure of metakaolin-based geopolymers in marine environment. J. Mater. Res. Technol. 8(3), 2747–2752 (2019)

    Article  Google Scholar 

  45. Yahya, Z.; Abdullah, M.M.A.B.; Jing, L.Y.; Li, L.-Y.; Abd Razak, R.: Seawater Exposure Effect on Fly Ash based Geopolymer Concrete with Inclusion of Steel Fiber. IOP Publishing, Bristol (2020)

    Book  Google Scholar 

  46. Samimi, K.; Kamali-Bernard, S.; Maghsoudi, A.A.: Durability of self-compacting concrete containing pumice and zeolite against acid attack, carbonation and marine environment. Constr. Build. Mater. 165, 247–263 (2018)

    Article  Google Scholar 

  47. Ganjian, E.; Pouya, H.S.: The effect of Persian Gulf tidal zone exposure on durability of mixes containing silica fume and blast furnace slag. Constr. Build. Mater. 23(2), 644–652 (2009)

    Article  Google Scholar 

  48. Odriozola, M.A.B.; Gutiérrez, P.A.: Comparative study of different test methods for reinforced concrete durability assessment in marine environment. Mater. Struct. 41(3), 527–541 (2008)

    Article  Google Scholar 

  49. Zuquan, J.; Xia, Z.; Tiejun, Z.; Jianqing, L.: Chloride ions transportation behavior and binding capacity of concrete exposed to different marine corrosion zones. Constr. Build. Mater. 177, 170–183 (2018)

    Article  Google Scholar 

  50. Stark, J.; Ludwig, H.-M.: Freeze-thaw and freeze-deicing salt resistance of concretes containing cement rich in granulated blast furnace slag. Mater. J. 94(1), 47–55 (1997)

    Google Scholar 

  51. Haha, M.B.; Lothenbach, B.; Le Saout, G.; Winnefeld, F.: Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part II: effect of Al2O3. Cem. Concr. Res. 42(1), 74–83 (2012)

    Article  Google Scholar 

  52. Zhang, Z.; Yao, X.; Wang, H.: Potential application of geopolymers as protection coatings for marine concrete III. Field experiment. Appl. Clay Sci. 67, 57–60 (2012)

    Article  Google Scholar 

  53. Peng, H.; Cui, C.; Liu, Z.; Cai, C.; Liu, Y.: Synthesis and reaction mechanism of an alkali-activated metakaolin-slag composite system at room temperature. J. Mater. Civ. Eng. 31(1), 04018345 (2019)

    Article  Google Scholar 

  54. Rashad, A.M.; Zeedan, S.R.; Hassan, H.A.: A preliminary study of autoclaved alkali-activated slag blended with quartz powder. Constr. Build. Mater. 33, 70–77 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Rashad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashad, A.M., Sadek, D.M. An Exploratory Study on Alkali-Activated Slag Blended with Microsize Metakaolin Particles Under the Effect of Seawater Attack and Tidal Zone. Arab J Sci Eng 47, 4499–4510 (2022). https://doi.org/10.1007/s13369-021-06151-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06151-z

Keywords

Navigation