Skip to main content

Advertisement

Log in

Evaluation of Concrete with Addition of Micronized Polyethylene Terephthalate for Application as Interlocking Concrete Blocks

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Considering the correct disposal of the significant volume of polyethylene terephthalate (PET) waste generated worldwide, interlocking concrete block pavement can be an alternative. Thus, in this study, the performance of interlocking blocks produced with partial replacement of fine aggregate by micronized PET in the percentages of 2.5, 5.0, 7.5, and 10.0% was evaluated. The results indicated that the values of compressive strength, modulus of elasticity, and flexural strength decreased with the increase in PET percentage. The blocks exhibited good abrasion resistance and resistance to sulfate attack. Therefore, the results indicate the promising application of PET for paving blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

All data, models, and code generated or used during the study appear in the submitted article. All authors contributed to the study conception and design. The authors have no relevant financial interests to disclose, just as there is no conflict of interest to declare that they are relevant to the content of this article. All authors certify that they have no affiliation or involvement with any organization or entity with any financial interest in the subject or materials discussed in this manuscript.

References

  1. PlasticsEurope, Plastics – the Facts 2020, (2020). https://www.plasticseurope.org/en/resources/market-data (accessed April 10, 2021).

  2. Lebreton, L.; Andrady, A.: Future scenarios of global plastic waste generation and disposal. Palgrave Commun. 5, 1–11 (2019). https://doi.org/10.1057/s41599-018-0212-7

    Article  Google Scholar 

  3. Navarro, R.; Ferrándiz, S.; López, J.; Seguí, V.J.: The influence of polyethylene in the mechanical recycling of polyethylene terephtalate. J. Mater. Process. Technol. 195, 110–116 (2008). https://doi.org/10.1016/j.jmatprotec.2007.04.126

    Article  Google Scholar 

  4. Ameri, M.; Nasr, D.: Performance properties of devulcanized waste PET modified asphalt mixtures. Pet. Sci. Technol. 35, 99–104 (2017). https://doi.org/10.1080/10916466.2016.1251457

    Article  Google Scholar 

  5. Rahman, W.M.N.W.A.; Wahab, A.F.A.: Green pavement using recycled polyethylene terephthalate (PET) as partial fine aggregate replacement in modified asphalt. Proced. Eng. 53, 124–128 (2013). https://doi.org/10.1016/j.proeng.2013.02.018

    Article  Google Scholar 

  6. Foti, D.: Recycled waste PET for sustainable fiber-reinforced concrete. In: Pacheco-Torgal, F.; Khatib, J.; Tuladhar, R. (Eds.) Use Recycle Plast Eco-Efficient Concrete, pp. 387–410. Elsevier, Amsterdam (2019). https://doi.org/10.1016/b978-0-08-102676-2.00018-9

    Chapter  Google Scholar 

  7. Hassani, A.; Ganjidoust, H.; Maghanaki, A.A.: Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement. Waste Manag. Res. 23, 322–327 (2005). https://doi.org/10.1177/0734242X05056739

    Article  Google Scholar 

  8. Alqahtani, F.K.; Khan, M.I.; Ghataora, G.; Dirar, S.: Production of recycled plastic aggregates and its utilization in concrete. J. Mater. Civ. Eng. (2017). https://doi.org/10.1061/(ASCE)MT

    Article  Google Scholar 

  9. Choi, Y.-W.; Moon, D.-J.; Chung, J.-S.; Cho, S.-K.: Effects of waste PET bottles aggregate on the properties of concrete. Cem. Concr. Res. 35, 776–781 (2005). https://doi.org/10.1016/j.cemconres.2004.05.014

    Article  Google Scholar 

  10. Padhan, R.K.; Gupta, A.A.; Badoni, R.P.; Bhatnagar, A.K.: Poly(ethylene terephthalate) waste derived chemicals as an antistripping additive for bitumen - An environment friendly approach for disposal of environmentally hazardous material. Polym. Degrad. Stab. 98, 2592–2601 (2013). https://doi.org/10.1016/j.polymdegradstab.2013.09.019

    Article  Google Scholar 

  11. Aghayan, I.; Khafajeh, R.: Recycling of PET in asphalt concrete. In: Pacheco-Torgal, F.; Khatib, J.; Tuladhar, R. (Eds.) Use of Recycled Plastics in Eco-efficient Concrete, pp. 269–285. Elsevier Ltd, Amsterdam (2019). https://doi.org/10.1016/B978-0-08-102676-2.00012-8

    Chapter  Google Scholar 

  12. Taherkhani, H.; Arshadi, M.R.: Investigating the mechanical properties of asphalt concrete containing waste polyethylene terephthalate. Road Mater. Pavement Des. 20, 381–398 (2017). https://doi.org/10.1080/14680629.2017.1395354

    Article  Google Scholar 

  13. Akçaözoǧlu, S.; Atiş, C.D.; Akçaözoǧlu, K.: An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste Manag. 30, 285–290 (2010). https://doi.org/10.1016/j.wasman.2009.09.033

    Article  Google Scholar 

  14. Ghabchi, R.; Dharmarathna, C.P.; Mihandoust, M.: Feasibility of using micronized recycled polyethylene terephthalate (PET) as an asphalt binder additive: a laboratory study. Constr. Build. Mater. 292, 123377 (2021). https://doi.org/10.1016/J.CONBUILDMAT.2021.123377

    Article  Google Scholar 

  15. Silva, D.A.; Betioli, A.M.; Gleize, P.J.P.; Roman, H.R.; Gómez, L.A.; Ribeiro, J.L.D.: Degradation of recycled PET fibers in Portland cement-based materials. Cem. Concr. Res. 35, 1741–1746 (2005). https://doi.org/10.1016/j.cemconres.2004.10.040

    Article  Google Scholar 

  16. Ochi, T.; Okubo, S.; Fukui, K.: Development of recycled PET fiber and its application as concrete-reinforcing fiber. Cem. Concr. Compos. 29, 448–455 (2007). https://doi.org/10.1016/j.cemconcomp.2007.02.002

    Article  Google Scholar 

  17. Foti, D.: Preliminary analysis of concrete reinforced with waste bottles PET fibers. Constr. Build. Mater. 25, 1906–1915 (2011). https://doi.org/10.1016/j.conbuildmat.2010.11.066

    Article  Google Scholar 

  18. Pereira De Oliveira, L.A.; Castro-Gomes, J.P.: Physical and mechanical behaviour of recycled PET fibre reinforced mortar. Constr. Build. Mater. 25, 1712–1717 (2011). https://doi.org/10.1016/j.conbuildmat.2010.11.044

    Article  Google Scholar 

  19. Ali, T.K.M.: Shear strength of a reinforced concrete beam by PET fiber. Environ. Dev. Sustain. (2020). https://doi.org/10.1007/s10668-020-00974-w

    Article  Google Scholar 

  20. Koide, H.; Tomon, M.; Sasaki, T.: Investigation of the use of waste plastic as an aggregate for lightweight concrete. Chall. Concr. Constr. 5, 177–185 (2002)

    Google Scholar 

  21. Wiswamitra, K.A.; Dewi, S.M.; Choiron, M.A.; Wibowo, A.: Heat resistance of lightweight concrete with plastic aggregate from PET (polyethylene terephthalate)-mineral filler. Mater. Sci. 8, 99–118 (2021). https://doi.org/10.3934/matersci.2021007

    Article  Google Scholar 

  22. Frigione, M.: Recycling of PET bottles as fine aggregate in concrete. Waste Manag. 30, 1101–1106 (2010). https://doi.org/10.1016/j.wasman.2010.01.030

    Article  Google Scholar 

  23. Mohammed, A.A.: Flexural behavior and analysis of reinforced concrete beams made of recycled PET waste concrete. Constr. Build. Mater. 155, 593–604 (2017). https://doi.org/10.1016/j.conbuildmat.2017.08.096

    Article  Google Scholar 

  24. Foti, D.; Lerna, M.: New mortar mixes with chemically depolymerized waste PET aggregates. Adv. Mater. Sci. Eng. (2020). https://doi.org/10.1155/2020/8424936

    Article  Google Scholar 

  25. Corinaldesi, V.; Donnini, J.; Nardinocchi, A.: Lightweight plasters containing plastic waste for sustainable and energy-efficient building. Constr. Build. Mater. 94, 337–345 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.069

    Article  Google Scholar 

  26. Ryu, B.H.; Lee, S.; Chang, I.: Pervious pavement blocks made from recycled polyethylene terephthalate (PET): Fabrication and engineering properties. Sustain (2020). https://doi.org/10.3390/SU12166356

    Article  Google Scholar 

  27. Azhdarpour, A.M.; Nikoudel, M.R.; Taheri, M.: The effect of using polyethylene terephthalate particles on physical and strength-related properties of concrete; a laboratory evaluation. Constr. Build. Mater. 109, 55–62 (2016). https://doi.org/10.1016/j.conbuildmat.2016.01.056

    Article  Google Scholar 

  28. Sadrmomtazi, A.; Dolati-Milehsara, S.; Lotfi-Omran, O.; Sadeghi-Nik, A.: The combined effects of waste polyethylene terephthalate (PET) particles and pozzolanic materials on the properties of selfcompacting concrete. J. Clean. Prod. 112, 2363–2373 (2016). https://doi.org/10.1016/j.jclepro.2015.09.107

    Article  Google Scholar 

  29. ABNT, NBR 9781: Concrete paving units — Specification and test methods, (2013)

  30. ABNT, NBR 13583: Portland cement — Determination of volumetric change of Portland cement mortar bars exposed to sodium sulphate solution, (2014)

  31. Usman, N.; Masirin, M.I.M.: Performance of asphalt concrete with plastic fibres. In: Pacheco-Torgal, F.; Khatib, J.; Tuladhar, R. (Eds.) Use Recycled Plastics in Eco-Efficient Concrete, pp. 427–440. Elsevier, Amsterdam (2019). https://doi.org/10.1016/b978-0-08-102676-2.00020-7

    Chapter  Google Scholar 

  32. Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A.: Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios. Waste Manag. 29, 2707–2716 (2009). https://doi.org/10.1016/j.wasman.2009.05.007

    Article  Google Scholar 

  33. Reddy, K.A.K.; Kumar, C.A.: Study of mechanical properties of concrete using waste pet bottle fibres for the reinforcement. Int. J. Eng. Manag. Res. 4, 232–240 (2014)

    Google Scholar 

  34. Sadeghifar, A.; Sohrabi, M.: Investigating the properties of mechanical concrete containing waste plastic bottles replaced instead rock material. Interdiscip. J. Contemp. Res. Bus. 5, 131–141 (2014)

    Google Scholar 

  35. Rahmani, E.; Dehestani, M.; Beygi, M.H.A.; Allahyari, H.; Nikbin, I.M.: On the mechanical properties of concrete containing waste PET particles. Constr. Build. Mater. 47, 1302–1308 (2013). https://doi.org/10.1016/j.conbuildmat.2013.06.041

    Article  Google Scholar 

  36. Marzouk, O.Y.; Dheilly, R.M.; Queneudec, M.: Valorization of post-consumer waste plastic in cementitious concrete composites. Waste Manag. 27, 310–318 (2007). https://doi.org/10.1016/j.wasman.2006.03.012

    Article  Google Scholar 

  37. Saikia, N.; De Brito, J.: Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr. Build. Mater. 52, 236–244 (2014). https://doi.org/10.1016/j.conbuildmat.2013.11.049

    Article  Google Scholar 

  38. Ismail, Z.Z.; AL-Hashmi, E.A.: Use of waste plastic in concrete mixture as aggregate replacement. Waste Manag. 28, 2041–2047 (2008). https://doi.org/10.1016/j.wasman.2007.08.023

    Article  Google Scholar 

  39. Taherkhani, H.: An investigation on the properties of the concrete containing waste PET fibers. Int. J. Sci. Eng. Investig. 3, 37–43 (2014)

    Google Scholar 

  40. Soroushian, P.; Plasencia, J.; Ravanbakhsh, S.: Assessment of reinforcing effects of recycled plastic and paper in concrete. ACI Mater. J. 100, 203–207 (2004)

    Google Scholar 

  41. Veiga, K.K.: Performance of a white Portland cement with slag and chemical activator against sodium sulfate attack (in Portuguese), Universidade Federal de Santa Maria, (2011)

  42. Pezzi, L.; De Luca, P.; Vuono, D.; Chiappetta, F.; Nastro, A.: Concrete products with waste’s plastic material (bottle, glass, plate). Mater. Sci. Forum. 514–516, 1753–1757 (2006)

    Article  Google Scholar 

  43. Detomi, A.C.: The effect of PET waste additions on cementitious composites (in Portuguese), Universidade Federal de São João Del Rei, (2012)

  44. Almeida, S.M.: Análise do módulo de elasticidade estático e dinâmico do concreto de Cimento Portland através de ensaios de compressão simples e de frequência ressonante, Universidade Federal de Minas Gerais, (2012)

  45. Naik, T.R.; Singh, S.S.; Huber, C.O.; Brodersen, B.S.: Use of post-consumer waste plastics in cement-based composites. Cem. Concr. Res. 26, 1489–1492 (1996). https://doi.org/10.1016/0008-8846(96)00135-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the support of the Pavement Engineering Laboratory (LEP) of the Federal University of Campina Grande.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Maria Gonçalves Duarte Mendonça.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendonça, A.M.G.D., de Almeida, S.P., Rodrigues, J.K.G. et al. Evaluation of Concrete with Addition of Micronized Polyethylene Terephthalate for Application as Interlocking Concrete Blocks. Arab J Sci Eng 47, 4453–4462 (2022). https://doi.org/10.1007/s13369-021-06128-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06128-y

Keywords

Navigation