Skip to main content
Log in

Comparative Analysis of Five Nanoparticles in the Flow of Viscous Fluid with Nonlinear Radiation and Homogeneous–Heterogeneous Reaction

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current study investigates the flow of viscous nanofluids over the stretching surface with variable thickness in the presence of heterogeneous and homogeneous reactions. Comparison is made for water-based nanofluids with copper (Cu), silver (Ag), copper oxide (CuO), aluminum oxide (Al2O3), and titanium oxide (TiO2) as nanoparticles. The heat transfer phenomenon is characterized by nonlinear thermal radiation. The formulation of the model consists of partial differential equations with convective boundary conditions, which are converted into ordinary differential equations with the help of boundary layer approximation. The convergent series solution is computed with the help of an efficient analytical method, namely the Optimal Homotopy technique. For the validation of the suggested approach, the convergence of the obtained results is illustrated for different values of involved parameters. Moreover, residual errors for the varied number of terms in the derived series solution are displayed graphically. To validate the accuracy of the present results, a comparison with previously published results is presented. The influence of various variables on the velocity profile, the distribution profiles of temperature, and concentration is graphically discussed. Heat transfer rate (or local Nusselt number) and skin friction coefficient are estimated through the Tables. It is observed that temperature rises for higher radiation parameter and the temperature of aluminum oxide nanofluid is more because of its higher thermal conductivity as compared to other four nanoparticles. The study also reveals that with an improvement in the volume fraction of nanoparticles, the degree of the heat transfer rate and the coefficient of skin friction also increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Figure.13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

u, v :

Velocity components

T :

Temperature

b :

Stretched sheet constant

\((\rho c_{p} )_{nf}\) :

Heat capacitance

\(\mu_{f}\) :

Base fluid dynamic viscosity

\(h_{f}\) :

Non-uniform heat transfer coefficient

\(\alpha_{nf}\) :

Thermal diffusivity

\(\rho_{nf}\) :

Effective density of nanofluid

\(T_{\infty }\) :

Ambient temperature

\(K^{ * }\) :

Heterogeneous rate constant

\(K_{r}\) :

Homogeneous rate constant

\(C_{\infty }\) :

Ambient concentration

\(q_{r}\) :

Thermal radiation

\(k_{f}\) :

Mean adsorption coefficient

\(q_{w}\) :

Wall heat flux

\(D_{A}\) :

Coefficient of diffusion specie A

\(D_{B}\) :

Coefficient of diffusion specie B

\(\theta_{w}\) :

Temperature ratio parameter

c p :

Specific heat

x, y :

Cartesian coordinates

w :

Wall notation

U w :

Stretching velocity

\(a_{ \circ } ,\,b_{ \circ } ,\lambda\) :

Dimensionless constant

\(T_{f}\) :

Wall temperature

\(\mu_{nf}\) :

Dynamic viscosity of nanofluid

\(U_{ \circ }\) :

Dimensional constant

\(\rho_{f}\) :

Density of the base fluid

\(B_{t}\) :

Thermal Biot number

n :

Power-law index

Sc:

Schmidt number

a, b :

Reaction rate species

\(k_{nf}\) :

Effective thermal conductivity of nanofluid

\(\alpha\) :

Variable wall thickness

\(E_{c}\) :

Eckert number

R :

Radiation parameter

\(\Pr\) :

Prandtl number

References

  1. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles developments and applications of non-Newtonian fluid flow. ASME FED 66, 99–105 (1995)

    Google Scholar 

  2. Si, X.; Li, H.; Zheng, L.; Shen, Y.; Zhang, X.: A mixed convection flow and heat transfer of pseudo-plastic power law nanofluids past a stretching vertical plate. Int. J. Heat Mass Transf. 105, 350–358 (2017)

    Article  Google Scholar 

  3. Hayat, T.; Qayyum, S.; Imtiaz, M.; Alsaedi, A.: Comparative study of silver and copper water nanofluids with mixed convection and nonlinear thermal radiation. Int. J. Heat Mass Transf. 102, 723–732 (2016)

    Article  Google Scholar 

  4. Khan, W.A.; Uddin, M.J.; Ismail, A.I.M.: Hydrodynamic and thermal slip effect on double-diffusive free convective boundary layer flow of a nanofluid past a flat vertical plate in the moving free stream. PLoS ONE 8(3), e54024 (2013)

    Article  Google Scholar 

  5. Shehzad, S.A.; Abdullah, Z.; Abbasi, F.M.; Hayat, T.; Alsaedi, A.: Magnetic field effect in three-dimensional flow of an Oldroyd-B nanofluid over a radiative surface. J. Magn. Magn. Mater. 399, 97–108 (2016)

    Article  Google Scholar 

  6. Lu, D.; Ramzan, M.; N. ul Huda, J. D. Chung, U. Farooq. : Nonlinear radiation effect on MHD Carreau nanofluid flow over a radially stretching surface with zero mass flux at the surface. Sci. Rep. 8(1), 1–17 (2018)

    Google Scholar 

  7. Hayat, T.; Tanveer, A.; Alsaadi, F.: Simultaneous effects of radial magnetic field and wall properties on peristaltic flow of Carreau–Yasuda fluid in curved flow configuration. AIP Adv. 5, 127–234 (2015)

    Article  Google Scholar 

  8. Hayat, T.; Khan, M.I.; Waqas, M.; Alsaedi, A.: Newtonian heating effect in nanofluid low by a permeable cylinder. Results Phys. 7, 256–262 (2017)

    Article  Google Scholar 

  9. Qayyum, S.; Khan, M.I.; Hayat, T.; Alsaedi, A.: Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk. Physica B: Cond. Matter. 534, 173–183 (2018)

    Article  Google Scholar 

  10. Hayat, T.; Qayyum, S.; Alsaedi, A.; Shafiq, A.: Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. Int. J. Heat Mass Transf. 103, 99–107 (2016)

    Article  Google Scholar 

  11. Abid, N.; Ramzan, M.; Chung, J.D.; Kadry, S.; Chu, Y.M.: Comparative analysis of magnetized partially ionized copper, copper oxide–water and kerosene oil nanofluid flow with Cattaneo–Christov heat flux. Sci. Rep. 10(1), 1–14 (2020)

    Article  Google Scholar 

  12. Ramzan, M.; Chung, J.D.; Kadry, S.; Chu, Y.M.; Akhtar, M.: Nanofluid flow containing carbon nanotubes with quartic autocatalytic chemical reaction and Thompson and Troian slip at the boundary. Sci. Rep. 10(1), 1–13 (2020)

    Article  Google Scholar 

  13. Ramzan, M.; Gul, H.; Chung, J.D.; Kadry, S.; Chu, Y.M.: Significance of Hall effect and Ion slip in a three-dimensional bioconvective Tangent hyperbolic nanofluid flow subject to Arrhenius activation energy. Sci. Rep. 10(1), 1–15 (2020)

    Article  Google Scholar 

  14. Ramzan, M.; Rafiq, A.; Chung, J.D.; Kadry, S.; Chu, Y.M.: Nanofluid flow with autocatalytic chemical reaction over a curved surface with nonlinear thermal radiation and slip condition. Sci. Rep. 10(1), 1–13 (2020)

    Google Scholar 

  15. Lv, Y.P.; Gul, H.; Ramzan, M.; Chung, J.D.; Bilal, M.: Bioconvective Reiner-Rivlin nanofluid flow over a rotating disk with Cattaneo–Christov flow heat flux and entropy generation analysis. Sci. Rep. 11(1), 1–18 (2021)

    Article  Google Scholar 

  16. Riasat, S.; Ramzan, M.; Sun, Y.L.; Malik, M.Y.; Chinram, R.: Comparative analysis of Yamada-Ota and Xue models for hybrid nanofluid flow amid two concentric spinning disks with variable thermophysical characteristics. Case Stud. Therm. Eng. 26, 101039 (2021)

    Article  Google Scholar 

  17. Yu, B.; Ramzan, M.; Riasat, S.; Kadry, S.; Chu, Y.M.; Malik, M.Y.: Impact of autocatalytic chemical reaction in an Ostwald-de-Waele nanofluid flow past a rotating disk with heterogeneous catalysis. Sci. Rep. 11(1), 1–17 (2021)

    Google Scholar 

  18. Gul, H.; Ramzan, M.; Chung, J.D.; Chu, Y.M.; Kadry, S.: Multiple slips impact in the MHD hybrid nanofluid flow with Cattaneo–Christov heat flux and autocatalytic chemical reaction. Sci. Rep. 11(1), 1–14 (2021)

    Article  Google Scholar 

  19. Shaheen, N.; Ramzan, M.; Alshehri, A.; Shah, Z.; Kumam, P.: Soret-Dufour impact on a three-dimensional Casson nanofluid flow with dust particles and variable characteristics in a permeable media. Sci. Rep. 11(1), 1–21 (2021)

    Google Scholar 

  20. Zhang, Y.; Shahmir, N.; Ramzan, M.; Alotaibi, H.; Aljohani, H.M.: Upshot of melting heat transfer in a Von Karman rotating flow of gold–silver/engine oil hybrid nanofluid with cattaneo-christov heat flux. Case Stud. Therm. Eng. 26, 101149 (2021)

    Article  Google Scholar 

  21. Ahmad, M.; Taj, M.; Abbasi, A.; Ahmad, I.: Time-dependent 3D flow of Maxwell nanofluid due to an unsteady stretching surface through porous space. J Braz Soc Mech Sci. 41(10), 1–13 (2019)

    Google Scholar 

  22. Ahmad, M.; Muhammad, T.; Ahmad, I.; Aly, S.: Time-dependent 3D flow of viscoelastic nanofluid over an unsteady stretching surface. Phys. A 551, 124004 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ahmad, M.; Shehzad, S.A.; Iqbal, A.; Taj, M.: Time-dependent three-dimensional Oldroyd-B nanofluid flow due to bidirectional movement of surface with zero mass flux. Adv. Mech. Eng. 12(4), 1687814020913783 (2020)

    Article  Google Scholar 

  24. Ahmad, M.; Mabood, F.; Shehzad, S.A.; Taj, M.; Magmood, F.M.: Convective heat and zero-mass flux conditions in the time-dependent second-grade nanofluid flow by unsteady bidirectional surface movement. Chin. J. Phys. 72, 448 (2021)

    Article  MathSciNet  Google Scholar 

  25. Herisanu, N.; Marinca, V.; Dordea, T.; Madescu, G.: A new analytical approach to nonlinear vibration of an electric machine. Proc. Rom. Acad. Ser. A: Math. Phys. Technol. Sci. Inf. Sci. 9(3), 229–236 (2008)

    Google Scholar 

  26. Ahmad, I.; Ahmad, M.; Sajid, M.: Heat transfer analysis of MHD flow due to unsteady bi-directional stretching sheet through porous space. Therm. Sci. 20(6), 1913–1925 (2016)

    Article  Google Scholar 

  27. Shehzad, S.A.; Sheikholeslami, M.; Ambreen, T.; Shafee, A.; Babazadeh, H.; Ahmad, M.: Heat transfer management of hybrid nanofluid including radiation and magnetic source terms within a porous domain. Appl. Nanosci. 10(12), 5351–5359 (2020)

    Article  Google Scholar 

  28. Khan, N.S.; Shah, Q.; Sohail, A.; Ullah, Z.; Kaewkhao, A.; Kumam, P.; Thounthong, P.: Rotating flow assessment of magnetized mixture fluid suspended with hybrid nanoparticles and chemical reactions of species. Sci. Rep. 11(1), 1–18 (2021)

    Google Scholar 

  29. Bashir, S.; Ramzan, M.; Chung, J.D.; Chu, Y.M.; Kadry, S.: Analyzing the impact of induced magnetic flux and Fourier’s and Fick’s theories on the Carreau–Yasuda nanofluid flow. Sci. Rep. 11(1), 1–18 (2021)

    Article  Google Scholar 

  30. Hayat, T.; Khan, M.I.; Farooq, M.; Alsaedi, A.; Waqas, M.; Yasmeen, T.: Impact of Cattaneo–Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 99, 702–710 (2016)

    Article  Google Scholar 

  31. Ramesh, G.K.; Kumara, B.C.P.; Gireesha, B.J.; Rashidi, M.M.: Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. J. Appl. Fluid Mech. 9(3), 1115–1122 (2016)

    Article  Google Scholar 

  32. Hayat, T.; Hussain, Z.; Alsaedi, A.; Asghar, A.: Carbon nanotubes effects in the stagnation point flow towards a nonlinear stretching sheet with variable thickness. Adv. Powder Technol. 27, 1677–1688 (2016)

    Article  Google Scholar 

  33. Zhang, X.; Zhang, H.; Wang, Z.: Bending collapse of square tubes with variable thickness. Int. J. Mech. Sci. 106, 107–116 (2016)

    Article  Google Scholar 

  34. Xun, S.; Zhao, J.; Zheng, L.; Chen, X.; Zhang, X.: Flow and heat transfer of Ostwald-de Waele fluid over a variable thickness rotating disk with index decreasing. Int. J. Heat Mass Transf. 103, 1214–1224 (2016)

    Article  Google Scholar 

  35. Hayat, T.; Bashir, G.; Waqas, M.; Alsaedi, A.: MHD 2D flow of Williamson nanofluid over a nonlinear variable thicked surface with melting heat transfer. J. Mol. Liq. 223, 836–844 (2016)

    Article  Google Scholar 

  36. Fang, T.; Zhang, J.; Zhong, Y.: Boundary layer flow over a stretching sheet with variable thickness. Appl. Math. Comput. 218, 7241–7252 (2012)

    MathSciNet  MATH  Google Scholar 

  37. Hayat, T.; Bashir, Z.; Qayyum, S.; Alsaedi, A.: Investigation of double diffusion Cattaneo–Christov model in mixed convection flow by variable thickness surface. Results Phys. 7, 3873–3881 (2017)

    Article  Google Scholar 

  38. Suleman, M.; Ramzan, M.; Ahmad, S.; Lu, D.; Muhammad, T.; Chung, J.D.: A numerical simulation of silver–water nanofluid flow with impacts of newtonian heating and homogeneous–heterogeneous reactions past a nonlinear stretched cylinder. Symmetry. 11(2), 295 (2019)

    Article  Google Scholar 

  39. Falodun, B.O.; Ayegbusi, F.D.: Soret-Dufour mechanism on an electrically conducting nanofluid flow past a semi-infinite porous plate with buoyancy force and chemical reaction influence. Numer. Methods Partial Differ. Eqn. 37(2), 1419–1438 (2021)

    Article  MathSciNet  Google Scholar 

  40. Ramzan, M.; Bilal, M.; Chung, J.D.: Influence of homogeneous-heterogeneous reactions on MHD 3D Maxwell fluid flow with Cattaneo-Christov heat flux and convective boundary condition. J. Mol. Liqds. 230, 415–422 (2017)

    Article  Google Scholar 

  41. Agunbiade, A.S.; Dada, S.M.: Effects of viscous dissipation on convective rotatory chemically reacting Rivlin–Ericksen flow past a porous vertical plate. J. Taibah Univ. Sci. 13(1), 402–413 (2019)

    Article  Google Scholar 

  42. Ramzan, M.; Shaheen, N.: Thermally stratified Darcy–Forchheimer nanofluid flow comprising carbon nanotubes with effects of Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. Phys. Scrip. 95(1), 701–715 (2019)

    Google Scholar 

  43. Raju, C.S.K.; Sandeep, N.; Saleem, S.: Effects of induced magnetic field and homogeneous–heterogeneous reactions on stagnation flow of a Casson fluid. Eng. Sci. Tech. Int. J. 19(2), 875–887 (2016)

    Google Scholar 

  44. Mishra, R.: Slip Effect on MHD flow and heat transfer of Jeffrey Nanofluid over a Streching sheet in the presence of nonlinear thermal radiation and chemical reaction. Int. J. Eng. & Sci. Res. Tech. 6(4), 2017 (2017)

    Google Scholar 

  45. Ramzan, M.; Shaheen, N.; Kadry, S.; Ratha, Y.; Nam, Y.: Thermally Stratified Darcy Forchheimer Flow on a Moving Thin Needle with Homogeneous heterogeneous reactions and non-uniform heat source/sink. Appl. Sci. 10(2), 432 (2020)

    Article  Google Scholar 

  46. Vaidya, H.; Prasad, K.V.; Setty, S.: Significances of homogeneous-heterogeneous reactions on casson fluid over a slippery stretchable rotating disk with variable thickness. CFD Lett. 4, 41–63 (2019)

    Google Scholar 

  47. Sheikh, M.; Abbas, Z.: Homogeneous–heterogeneous reactions in stagnation point flow of Casson fluid due to a stretching/shrinking sheet with uniform suction and slip effects. Ain Shams Eng. J. 8, 467–474 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia for funding this work through research groups program under Grant Number R.G.P-1/36/42.

Author information

Authors and Affiliations

Authors

Contributions

MR supervised and conceived the idea; SB wrote the manuscript; and MYM and HA helped in the revised draft and validation.

Corresponding author

Correspondence to Muhammad Ramzan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, S., Ramzan, M., Malik, M.Y. et al. Comparative Analysis of Five Nanoparticles in the Flow of Viscous Fluid with Nonlinear Radiation and Homogeneous–Heterogeneous Reaction. Arab J Sci Eng 47, 8129–8140 (2022). https://doi.org/10.1007/s13369-021-06094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06094-5

Keywords

Navigation