Skip to main content

Advertisement

Log in

EMHD Flow of Radiative Second-Grade Nanofluid over a Riga Plate due to Convective Heating: Revised Buongiorno’s Nanofluid Model

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Exploiting the impact of Lorentz force and convective heating boundary on second-grade nanofluid flow alongside a Riga pattern is the main objective of the present work. Modelling of the present work is done through Grinberg term and a Lorentz force applied parallel to the wall of a Riga plate. The nanoparticles fraction on the solid surface of Riga pattern maintained a strong retardation because of zero mass flux. Theories of Cattaneo–Christov heat flux and generalized Fick’s relations are employed by following the modern aspects of heat and mass transportations. In the current study, additional features of thermal radiation are also included in the energy equation in terms of linear expressions. In order to make the analysis more worthy, effect of chemical reaction is also included. By applying the suitable variables, constituted problem is converted into dimensionless form. Solution of the problem with desired accuracy is obtained by utilizing popular method called Runge–Kutta–Fehlberg. The graphical representations are used to illustrate the flow controlling parameters involved by their attractive physical consequences. Velocity distribution is observed for the increase with the second-grade parameter. Further, an improved nanoparticles temperature distribution is observed with the increase in radiation parameter and Biot number. Additionally, the distribution of the concentration of nanoparticles increases with increase in values of the thermophoretic parameter. Based on the scientific calculations obtained, it is established that the reported results may play a useful role in production processes and in the improvement of energy and thermal resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Choi, S.U.S.: Enhancing thermal conductivity of fluids with nanoparticles. Proc. ASME Int. Mech. Eng. Cong Exp. 66, 99–105 (1995)

    Google Scholar 

  2. Beiki, H.: Developing convective mass transfer of nanofluids in fully developed flow regimes in a circular tube: modeling using fuzzy inference system and ANFIS. Int. J. Heat Mass Transf. 173, 121285 (2021)

    Article  Google Scholar 

  3. Buongiorno, J.: Convective transport in nanofluids. J. Heat Transf. 128(3), 240–250 (2006)

    Article  Google Scholar 

  4. Kuznetsov, A.V.; Nield, D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  5. Daniel, Y.S.; Aziz, Z.A.; Ismail, Z.; Bahar, A.: Unsteady EMHD dual stratified flow of nanofluid with slips impacts. Alex. Eng. J. 59(1), 177–189 (2020)

    Article  Google Scholar 

  6. Gangadhar, K.; Kannan, T.; Jayalakshmi, P.: Magnetohydrodynamic micropolar nanofluid past a permeable stretching/shrinking sheet with Newtonian heating. J Braz. Soc. Mech. Sci. Eng. 39, 4379–4391 (2017)

    Article  Google Scholar 

  7. Hashimoto, S.; Yano, K.; Hirota, Y.; Uchiyama, H.; Tsutsui, S.: Analysis of enhancement mechanism for thermal conductivity if nanofluids by inelastic X-ray scattering. Int. J. Heat Mass Transf. 173, 121245 (2021)

    Article  Google Scholar 

  8. Kanti, P.K.; Sharma, K.V.; Said, Z.; Gupta, M.: Experimental investigation on thermo-hydraulic performance of water-based fly ash-Cu hybrid nanofluid flow in a pipe at various inlet fluid temperatures. Int. Commun. Heat Mass. 124, 105238 (2021)

    Article  Google Scholar 

  9. Vinoth, R.; Sachuthananthan, B.: Flow and heat transfer behavior of hybrid nanofluid through microchannel with two different channels. Int. Commun. Heat Mas 123, 105194 (2021)

    Article  Google Scholar 

  10. Kanti, P.; Sharma, K.V.; Said, Z.; Kesti, V.: Entropy generation and friction factor of fly ash nanofluids flowing in a horizontal tube: experimental and numerical study. Int. J. Therm. Sci. 166, 106972 (2021)

    Article  Google Scholar 

  11. Saleh, B.; Syam Sundar, L.: Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids. Int. J. Therm. Sci. 165, 106935 (2021)

    Article  Google Scholar 

  12. Sáchica, D.; Treviño, C.; Martínez-Suástegui, L.: Numerical study of magnetohydrodynamic mixed convection and entropy generation of Al2O3-water nanofluid in a channel with two facing cavities with discrete heating. Int. J. Heat Fluid Flow 86, 108713 (2020)

    Article  Google Scholar 

  13. Zakaria, I.A.; Mohamed, W.A.N.W.; Zailan, M.B.; Azmi, W.H.: Experimental analysis of SiO2-Distilled water nanofluids in a polymer electrolyte membrane fuel cell parallel channel cooling plate. Int. J. Hydrog. Energy 44(47), 25850–25862 (2019)

    Article  Google Scholar 

  14. Ya Rudyak, V.; Minakov, A.V.; Pryazhnikov, M.I.: Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluids. J. Mol. Liq. 329, 115517 (2021)

    Article  Google Scholar 

  15. Shit, S.P.; Pal, S.; Ghosh, N.K.; Sau, K.: Thermophysical properties of graphene and hexagonal boron nitride nanofluids: a comparative study by molecular dynamics. J. Mol. Struct. 1239, 130525 (2021)

    Article  Google Scholar 

  16. Bahiraei, M.; Mazaheri, N.: A comprehensive analysis for second law attributes of spiral heat exchanger operating with nanofluid using two-phase mixture model: exergy destruction minimization attitude. Adv. Powder Technol. 32(1), 211–224 (2021)

    Article  Google Scholar 

  17. Ji, W.; Yang, L.; Chen, Z.; Mao, M.; Huang, J.: Experimental studies and ANN predictions on the thermal properties of TiO2-Ag hybrid nanofluids: consideration of temperature, particle loading, ultrasonication and storage time. Powder Technol. 388, 212–232 (2021)

    Article  Google Scholar 

  18. Tanveer, A.; Malik, M.Y.: Slip and porosity effects on peristalsis of MHD Ree-Eyring nanofluid in curved geometry. Ain Shams Eng. J. 12(1), 955–968 (2021)

    Article  Google Scholar 

  19. Rafiq, M.; Shafique, M.; Azam, A.; Ateeq, M.: Transformer oil-based nanofluid: the application of nanomaterials on thermal, electrical and physicochemical properties of liquid insulation—a review. Ain Shams Eng. J. 12(1), 555–576 (2021)

    Article  Google Scholar 

  20. Rivlin, R.S.; Ericksen, J.L.: Stress deformation relations for isotropic materials. J. Ration Mech. Anal. 4, 323–425 (1955)

    MathSciNet  MATH  Google Scholar 

  21. Imtiaz, M.; Mabood, F.; Hayat, T.; Alsaedi, A.: Homogeneous-heterogeneous reactions in MHD radiative flow of second grade fluid due to a curved stretching surface. Int. J. Heat Mass Transf. 145, 118781 (2019)

    Article  Google Scholar 

  22. Adeniyan, A.; Mabood, F.; Okoya, S.S.: Effect of heat radiating and generating second-grade mixed convection flow over a vertical slender cylinder with variable physical properties. Int. Commun. Heat Mass 121, 105110 (2021)

    Article  Google Scholar 

  23. Waqas, H.; Khan, S.U.; Hassan, M.; Bhatti, M.M.; Imran, M.: Analysis on the bioconvection flow of modified second-grade nanofluid containing gyrotactic microorganisms and nanoparticles. J. Mol. Liq. 291, 111231 (2019)

    Article  Google Scholar 

  24. Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A.; Mustafa, M.: On magnetohydrodynamic flow of second grade nanofluid over a convectively heated nonlinear stretching surface. Adv. Powder Technol. 27(5), 1992–2004 (2016)

    Article  Google Scholar 

  25. Haq, S.U.; Shah, S.I.A.; Jan, S.U.; Khan, I.: MHD flow of generalized second grade fluid with modified Darcy’s law and exponential heating using fractional Caputo-Fabrizio derivatives. Alex. Eng. J. 60(4), 3845–3854 (2021)

    Article  Google Scholar 

  26. Veera Krishna, M.; Ameer Ahamad, N.; Chamkha, A.J.: Hall and ion slip impacts on unsteady MHD convective rotating flow of heat generating/absorbing second grade fluid. Alex. Eng. J. 60(1), 845–858 (2021)

    Article  Google Scholar 

  27. Mallawi, F.O.M.; Bhuvaneswari, M.; Sivasankaran, S.; Eswaramoorthi, S.: Impact of double: stratification on convective flow of a non-Newtonian liquid in a Riga plate with Cattaneo-Christov double-flux and thermal radiation. Ain Shams Eng. J. 12(1), 969–981 (2021)

    Article  Google Scholar 

  28. Gailitis, A.; Lielausis, O.: On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte. Appl Magnetohydrodyn. 12, 143–146 (1961)

    Google Scholar 

  29. Avilov, V.V.: Electric and magnetic fields for the Riga plate. Technical Report, FRZ, Rossendorf (1998)

  30. Tsinober, A.B.; Shtern, A.G.: Possibility of increasing the flow stability in a boundary layer by means of crossed electric and magnetic fields. Magnetohydrodynamics 3, 103–105 (1967)

    Google Scholar 

  31. Grinberg, E.: On determination of properties of some potential fields. Appl. Magnetohydrodyn. 12, 147–154 (1961)

    Google Scholar 

  32. Pantokratoras, A.; Magyari, E.: EMHD free-convection boundary-layer flow from a Riga-plate. J. Eng. Math. 64, 303–315 (2009)

    Article  MATH  Google Scholar 

  33. Ahmad, A.; Asghar, S.; Afzal, S.: Flow of nanofluid past a Riga plate. J. Magn. Magn. Mater. 402, 44–48 (2016)

    Article  Google Scholar 

  34. Ayub, M.; Abbas, T.; Bhatti, M.M.: Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate. Eur. Phys. J. Plus 131, 1–9 (2016)

    Article  Google Scholar 

  35. Ahmad, R.; Mustafa, M.; Turkyilmazoglu, M.: Buoyancy effects on nanofluid flow past a convectively heated vertical Riga plate: a numerical study. Int. J. Heat Mass Transf. 111, 827–835 (2017)

    Article  Google Scholar 

  36. Liu, Y.; Jian, Y.; Tan, W.: Entropy generation of electromagnetohydrodynamic (EMHD) flow in a curved rectangular microchannel. Int. J. Heat Mass Transf. 127, 901–913 (2018)

    Article  Google Scholar 

  37. Zainal, N.A.; Nazar, R.; Naganthran, K.; Pop, I.: Unsteady EMHD stagnation point flow over a stretching/shrinking sheet in a hybrid Al2O3-Cu/H2O nanofluid. Int. Commun. Heat Mass 123, 105205 (2021)

    Article  Google Scholar 

  38. Bilal, M.: Micropolar flow of EMHD nanofluid with nonlinear thermal radiation and slip effects. Alex. Eng. J. 59(2), 965–976 (2020)

    Article  Google Scholar 

  39. Abbas, T.; Ayub, M.; Bhatti, M.M.; Rashidi, M.M.; Ali, M.E.S.: Entropy generation on nanofluid flow through a horizontal Riga plate. Entropy 18, 223 (2016)

    Article  MathSciNet  Google Scholar 

  40. Bhatti, M.M.; Abbas, T.; Rashidi, M.M.: Effects of thermal radiation and electromagnetohydrodynamic on viscous nanofluid through a Riga plate. Multidiscip Model Mater Struct. 12(4), 605–618 (2016)

    Article  Google Scholar 

  41. Abbas, T.; Hayat, T.; Ayub, M.; Bhatti, M.M.; Alsaedi, A.: Electromagnetohydrodynamic nanofluid flow past a porous Riga plate containing gyrotactic microorganism. Neural. Comput. Appl. 31, 1905–1913 (2019)

    Article  Google Scholar 

  42. Rasool, G.; Wakif, A.: Numerical spectral examination of EMHD mixed convection flow of second-grade nanofluid towards a vertical Riga plate used an advanced version of the revised Buongiorno’s nanofluid model. J. Therm. Anal. Calorim. 143, 2379–2393 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are highly obliged and thankful to unanimous reviewers for their valuable comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali J. Chamkha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangadhar, K., Kumari, M.A. & Chamkha, A.J. EMHD Flow of Radiative Second-Grade Nanofluid over a Riga Plate due to Convective Heating: Revised Buongiorno’s Nanofluid Model. Arab J Sci Eng 47, 8093–8103 (2022). https://doi.org/10.1007/s13369-021-06092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06092-7

Keywords

Navigation