Skip to main content
Log in

A 2.4 GHz Bidirectional Power Amplifier Extending Nodes Distance of Transmission to 14.8 km for Amorphous Flat Air-to-ground Wireless Ad hoc Network

  • Research Article--Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a designed 2.4 GHz bidirectional power amplifier which is suitable for the amorphous flat air-to-ground Ad hoc network system. Based on this PA, each Ad hoc network node’s communication distance can be extended. The proposed PA is designed to be a bidirectional transmission structure. More specifically, RFPA5542 and MAX4003 chips are selected for the TX part. SKY65971 chip is selected for the RX part. The structural layout of the overall impedance matching circuit is optimized to a three-stage cascade current series negative feedback mode. The overall design above has realized the expectation of amplifying and forwarding the signal from the signal source and receiving and amplifying the weak signal from the air-to-ground network nodes in real-time. Measurement results show that the design delivers that the output power is 30.1–30.6dBm, the gain is 25.4–25.9 dB, and the noise is 2.0–2.4 dB when the frequency range is 2.4–2.5 GHz. The experimental results show that the maximum point-to-point transmission distance of the amorphous flat ground wireless Ad hoc network reaches 9600 m, and the maximum point-to-point transmission distance of the amorphous flat air-to-ground wireless Ad hoc network reaches 14,800 m. This paper realizes the 14.8 km long-distance transmission of wireless self-assembling nodes (including airborne self-assembling nodes and ground-based self-assembling nodes) in the 2.4 GHz band, which lays a certain foundation for the subsequent low-altitude economic fly-by-network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Elono Ongbwa, B. A., Kora, A. D., Fotso Wabo, T. J.: Improvement of Special Drive Test Route (SDTR) reliability for indoor radio frequency coverage assessment in 3G/4G Mobile Networks. 2020 22nd International Conference on Advanced Communication Technology (ICACT), Phoenix Park, Korea (South), 2020, pp. 222–227, DOI: https://doi.org/10.23919/ICACT48636.2020.9061361

  2. Won, S.; Choi, S.W.: Three decades of 3GPP target cell search through 3G, 4G, and 5G. IEEE Access 8, 116914–116960 (2020). https://doi.org/10.1109/ACCESS.2020.3003012

    Article  Google Scholar 

  3. Khan, M.S.; Iftikhar, A.; Shubair, R.M.; Capobianco, A.; Braaten, B.D.; Anagnostou, D.E.: Eight-element compact UWB-MIMO/diversity antenna with WLAN band rejection for 3G/4G/5G communications. IEEE Open J. Antennas Propag. 1, 196–206 (2020). https://doi.org/10.1109/OJAP.2020.2991522

    Article  Google Scholar 

  4. Zhou, G.-N.; Sun, B.-H.; Liang, Q.-Y.; Wu, S.-T.; Yang, Y.-H.; Cai, Y.-M.: Triband dual-polarized shared-aperture antenna for 2G/3G/4G/5G base station applications. IEEE Trans. Antennas Propag. 69(1), 97–108 (2021). https://doi.org/10.1109/TAP.2020.3016406

    Article  Google Scholar 

  5. Nonaka, N., et al.: 28 GHz-band experimental trial at 283 km/h using the shinkansen for 5G Evolution. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), Antwerp, Belgium, 2020, pp. 1-5, DOI: https://doi.org/10.1109/VTC2020-Spring48590.2020.9129578

  6. Garro, E., et al.: 5G mixed mode: NR multicast-broadcast services. IEEE Trans. Broadcast. 66(2), 390–403 (2020). https://doi.org/10.1109/TBC.2020.2977538

    Article  Google Scholar 

  7. Hong, W., et al.: The role of millimeter-wave technologies in 5G/6G wireless communications. IEEE J. Microw. 1(1), 101–122 (2021). https://doi.org/10.1109/JMW.2020.3035541

    Article  Google Scholar 

  8. Jiang, W.; Han, B.; Habibi, M.A.; Schotten, H.D.: The road towards 6G: a comprehensive survey. IEEE Open J. Commun. Soc. 2, 334–366 (2021). https://doi.org/10.1109/OJCOMS.2021.3057679

    Article  Google Scholar 

  9. Huang, J.; Wang, C.-X.; Chang, H.; Sun, J.; Gao, X.: Multi-frequency multi-scenario millimeter wave MIMO channel measurements and modeling for B5G wireless communication systems. IEEE J. Sel. Areas Commun. 38(9), 2010–2025 (2020). https://doi.org/10.1109/JSAC.2020.3000839

    Article  Google Scholar 

  10. Li, B.; Xu, W.; Li, Z.; Zhou, Y.: Adaptively biased OFDM for IM/DD-aided optical wireless communication systems. IEEE Wirel. Commun. Lett. 9(5), 698–701 (2020). https://doi.org/10.1109/LWC.2020.2966602

    Article  Google Scholar 

  11. Liu, X.; Lim, T.J.; Huang, J.: Optimal Byzantine attacker identification based on game theory in network coding enabled wireless ad hoc networks. IEEE Trans. Inf. Forensics Secur. 15, 2570–2583 (2020). https://doi.org/10.1109/TIFS.2020.2972129

    Article  Google Scholar 

  12. Ganesan, A.: Performance guarantees of distributed algorithms for QoS in wireless ad hoc networks. IEEE/ACM Trans. Netw. 28(1), 182–195 (2020). https://doi.org/10.1109/TNET.2019.2959797

    Article  Google Scholar 

  13. Li, L.; Hu, Y.; Zhang, H.; Liang, W.; Gao, A.: Deep learning based physical layer security of D2D underlay cellular network. China Commun. 17(2), 93–106 (2020). https://doi.org/10.23919/JCC.2020.02.008

    Article  Google Scholar 

  14. Khan, L.U., Majeed, U., Hong, C.S.: Federated learning for cellular networks: joint user association and resource allocation. 2020 21st Asia-Pacific Network Operations and Management Symposium (APNOMS), Daegu, Korea (South), 2020, pp. 405-408, DOI: https://doi.org/10.23919/APNOMS50412.2020.9237045

  15. Rattanapongphan, C., Nakorn, K.N., Rojviboonchai, K.: Adaptive Wi-Fi hotspot mode switching for phone-to-phone communication in the opportunistic network. 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 2017, pp. 151–154, DOI: https://doi.org/10.1109/ECTICon.2017.8096195

  16. Lee Y., Liao, W.: Ultimate performance of Wi-Fi access points with multiple interfaces: an application of software-defined network. 2018 20th International Conference on Advanced Communication Technology (ICACT), Chuncheon, Korea (South), 2018, pp. 590–594, DOI: https://doi.org/10.23919/ICACT.2018.8323844

  17. Sadio, O.; Ngom, I.; Lishou, C.: Design and prototyping of a software-defined vehicular networking. IEEE Trans. Veh. Technol. 69(1), 842–850 (2020). https://doi.org/10.1109/TVT.2019.2950426

    Article  Google Scholar 

  18. Cai, Y.; Ni, Y.; Zhang, J.; Zhao, S.; Zhu, H.: Energy efficiency and spectrum efficiency in underlay device-to-device communications-enabled cellular networks. China Commun. 16(4), 16–34 (2019). https://doi.org/10.12676/j.cc.2019.04.002

    Article  Google Scholar 

  19. Zhang, P.; Wang, X.; Ma, Z.; Song, J.: Joint optimization of satisfaction index and spectrum efficiency with cache restricted for resource allocation in multi-beam satellite systems. China Commun. 16(2), 189–201 (2019). https://doi.org/10.12676/j.cc.2019.02.013

    Article  Google Scholar 

  20. Safrianti, E., Yusfarino, Y., Feranita, Sari, L.O.: Microstrip antenna design H-shaped planar array 4 elements using circular slot for fixed WiMAX network 3.5 GHz frequency. 2018 2nd International Conference on Electrical Engineering and Informatics (ICon EEI), Batam, Indonesia, 2018, pp. 119–124, DOI: https://doi.org/10.1109/ICon-EEI.2018.8784325

  21. Jiang, Y., Wong, K., Cai, C., Sin, S.S.U, Martins, R.P.: A fixed-pulse shape feedback technique with reduced clock-jitter sensitivity in continuous-time sigma-delta modulators. 2010 17th IEEE International Conference on Electronics, Circuits, and Systems, Athens, Greece, 2010, pp. 547–550, DOI: https://doi.org/10.1109/ICECS.2010.5724570

  22. Forni, F., Shi, Y., van den Boom, H.P.A., Tangdiongga, E., Koonen, A.M.J.: Multiband LTE-A, WiFi ac, and 4-PAM baseband simultaneous transmission over 50 m thick-core POF for in-home network. 2017 19th International Conference on Transparent Optical Networks (ICTON), Girona, 2017, pp. 1–4, DOI: https://doi.org/10.1109/ICTON.2017.8025158

  23. Kora, A.D., Tezo, V.N.: Design and implementation of low-cost microwave Full-Duplex system based on WiFi cards for transmission over a long distance. 13th International Conference on Advanced Communication Technology (ICACT2011), Gangwon, Korea (South), 2011, pp. 1331–1334

  24. Jia, P.; You, F.; He, S.: A 1.8–3.4-GHz bandwidth-improved reconfigurable mode Doherty power amplifier utilizing switches. IEEE Microw. Wirel. Compon. Lett. 30(1), 102–105 (2020). https://doi.org/10.1109/LMWC.2019.2951215

    Article  Google Scholar 

  25. Manente, D.; Padovan, F.; Seebacher, D.; Bassi, M.; Bevilacqua, A.: A 28-GHz stacked power amplifier with 20.7-dBm output P1dB in 28-nm bulk CMOS. IEEE Solid-State Circuits Lett. 3, 170–173 (2020). https://doi.org/10.1109/LSSC.2020.3009973

    Article  Google Scholar 

  26. Nguyen, V.-V.; Nam, H.; Lee, B.-H.; Park, J.-D.: A 5.8–17.6 GHz cascaded bidirectional distributed gain amplifier utilizing asymmetric stages in 65 nm CMOS. Microw. Opt. Technol. Lett. 61, 1683–1687 (2019). https://doi.org/10.1002/mop.31762

    Article  Google Scholar 

  27. Köse, A.; Gökcesu, H.; Evirgen, N.; Gökcesu, K.; Médard, M.: A novel method for scheduling of wireless ad hoc networks in polynomial time. IEEE Trans. Wireless Commun. 20(1), 468–480 (2021). https://doi.org/10.1109/TWC.2020.3025448

    Article  Google Scholar 

  28. Zhu, J.; Zhang, L.; Yang, H.-C.; Hasna, M.O.: Generalized area spectral efficiency of wireless Ad-Hoc networks over Rayleigh fading. J. Commun. Netw. 22(4), 293–302 (2020). https://doi.org/10.1109/JCN.2020.000002

    Article  Google Scholar 

  29. Li, Y., Lei, Y., Wang, M.: Design of classroom wireless fire monitoring and alarm system based on CC2530. 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 2020, pp. 2351–2355, DOI: https://doi.org/10.1109/ICCC51575.2020.9345268

  30. Ma, C., Li, N., Pang, X., Wang, S., Yang, Y.: Hardware design of factory toxic gas leakage monitoring system based on CC2530. 2018 10th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 2018, pp. 243–245, DOI: https://doi.org/10.1109/IHMSC.2018.10162

  31. "IEEE Standard for Low-Rate Wireless Networks," in IEEE Std 802.15.4–2020 (Revision of IEEE Std 802.15.4–2015), vol., no., pp.1–800, 23 July 2020, DOI: https://doi.org/10.1109/IEEESTD.2020.9144691

  32. "IEEE Standard for Low-Rate Wireless Networks - Amendment 7: Defining Enhancements to the Smart Utility Network (SUN) Physical Layers (PHYs) Supporting up to 2.4 Mb/s Data Rates," in IEEE Std 802.15.4x-2019 (Amendment to IEEE 802.15.4–2015 as amended by IEEE 802.15.4n-2016, IEEE 802.15.4q-2016, IEEE 802.15.4u-2016, IEEE 802.15.4t-2017, IEEE 802.15.4v-2017, IEEE 802.15.4s-2018, and IEEE 802.15.4–2015/Cor. 1–2018), vol., no., pp.1–30, 26 April 2019, DOI: https://doi.org/10.1109/IEEESTD.2019.8700703

  33. Lee, S.; Kang, S.; Hong, S.: A 28-GHz CMOS linear power amplifier with low output phase variation over dual power modes. IEEE Microwave Wirel. Compon. Lett. 29(8), 551–553 (2019). https://doi.org/10.1109/LMWC.2019.2922507

    Article  Google Scholar 

  34. Stärke, P.; Carta, C.; Ellinger, F.: High-linearity 19-dB power amplifier for 140–220 GHz, saturated at 15 dBm, in 130-nm SiGe. IEEE Microwave Wirel. Compon. Lett. 30(4), 403–406 (2020). https://doi.org/10.1109/LMWC.2020.2978397

    Article  Google Scholar 

  35. Lyu, H.; Chen, K.: Balanced-to-Doherty mode-reconfigurable power amplifier with high efficiency and linearity against load mismatch. IEEE Trans. Microw. Theory Tech. 68(5), 1717–1728 (2020). https://doi.org/10.1109/TMTT.2020.2979844

    Article  Google Scholar 

  36. Fang, W.-R., et al.: X-band high-efficiency high-power GaN power amplifier based on edge-triggered gate modulation. IEEE Microwave Wirel. Compon. Lett. 30(9), 884–887 (2020). https://doi.org/10.1109/LMWC.2020.3013146

    Article  Google Scholar 

  37. Gilasgar, M.; Barlabé, A.; Pradell, L.: High-efficiency reconfigurable dual-band class-F power amplifier with harmonic control network using MEMS. IEEE Microwave Wirel. Compon. Lett. 30(7), 677–680 (2020). https://doi.org/10.1109/LMWC.2020.2994373

    Article  Google Scholar 

  38. El-Nassar, O.; Rebeiz, G.M.: A 120-GHz bandwidth CMOS distributed power amplifier with multi-drive intra-stack coupling. IEEE Microwave Wirel. Compon. Lett. 30(8), 782–785 (2020). https://doi.org/10.1109/LMWC.2020.3001261

    Article  Google Scholar 

  39. Upamanyu, K.; Narayanan, G.: Improved accuracy, modeling, and stability analysis of power-hardware-in-loop simulation with open-loop inverter as power amplifier. IEEE Trans. Industr. Electron. 67(1), 369–378 (2020). https://doi.org/10.1109/TIE.2019.2896093

    Article  Google Scholar 

  40. Dong, J.; He, B.; Ma, M.; Zhang, C.; Li, G.: Open-closed-loop PD iterative learning control corrected with the angular relationship of output vectors for a flexible manipulator. IEEE Access 7, 167815–167822 (2019). https://doi.org/10.1109/ACCESS.2019.2930559

    Article  Google Scholar 

  41. H. M. T. S., G. E. M. P., C. J. P. A.: Implementation of a low-cost smart home based on Standard 802.11 b/g/n WiFi," 2019 7th International Engineering, Sciences, and Technology Conference (ESTEC), 2019, pp. 520–525, DOI: https://doi.org/10.1109/IESTEC46403.2019.00099

  42. Wang, Z., Dong, J., Yu, J., Yu, Z., Lin, S., Li, K.: The air-ground integrated MIMO cooperative relay beamforming wireless ad-hoc network technology research that based on maximum ratio combining. 2020 International Workshop on Electronic Communication and Artificial Intelligence (IWECAI), Shanghai, China, 2020, pp. 11-19, DOI: https://doi.org/10.1109/IWECAI50956.2020.00010

  43. Rappaport, T.S.: Wireless Communications Principles and Practice, Second Edition. Publishing House of Electronics Industry, Beijing (2006)

    Google Scholar 

  44. Feuerstein, M.J.; Blackard, K.L.; Rappaport, T.S.; Seidel, S.Y.; Xia, H.H.: Path loss, delay spread, and outage models as functions of antenna height for microcellular system design. IEEE Trans. Veh. Technol. 43(3), 487–498 (1994)

    Article  Google Scholar 

  45. Ramo, S.; Whinnery, J.R.; Van Duzer, T.: Fields, and Waves in Communications Electronics. John Wiley & Sons, New York (1965)

    Google Scholar 

  46. Stutzman, W.L.: Polarization in Electromagnetic Systems. Artech House, Boston (1993)

    MATH  Google Scholar 

  47. Millman, J.; Grabel, A.: Microelectronics, 2nd edn. Mc Graw-Hill Book Company, New York (1987)

    Google Scholar 

  48. Lang, C.; Jianlian, Y.; Yebing, G.: The utility model relates to a 24GHz CMOS RF front-end circuit. Microelectronics 47(5), 20–24 (2017)

    Google Scholar 

  49. Lin, C.; Li, G.: ESD protection design for open-drain power amplifier in CMOS technology. IEEE Trans. Device Mater. Reliab. 19(4), 782–790 (2019). https://doi.org/10.1109/TDMR.2019.2951939

    Article  Google Scholar 

  50. AREF A F, NEGRA R, KHAN M A. Class-0: a highly linear class of power amplifier in 0.13μm CMOS for WCDMA/LTE applications[C]// IEEE ISSCC. San Francisco, CA, USA. 2015:1–3

  51. Fuzhan, C.; Yanbin, L.; Yebing, G.; Jianlian, Y.: A 24GHz CMOS power amplifier with adaptive bias circuit. Microelectronics 50(6), 817–822 (2020)

    Google Scholar 

  52. Adi, P.D.P., et al.: A performance evaluation of ZigBee mesh communication on the Internet of Things (IoT). 2021 3rd East Indonesia Conference on Computer and Information Technology (EIConCIT), 2021, pp. 7–13, DOI: https://doi.org/10.1109/EIConCIT50028.2021.9431875

  53. Li, T., Abe, H., Tateno, S., Hachiya, Y.: Comparison of wireless communication technologies in remote monitoring systems. 2018 18th International Conference on Control, Automation and Systems (ICCAS), PyeongChang, Korea (South), 2018, pp. 591–595

  54. Li, Z., He, T.: LongBee: enabling long-range cross-technology communication. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, 2018, pp. 162–170, DOI: https://doi.org/10.1109/INFOCOM.2018.8485938

  55. Wang, Y., Chen, K., Xue, C., Li, H.: Design and implementation for ZigBee long-distance wireless data transmission system. IEEE 2011 10th International Conference on Electronic Measurement & Instruments, Chengdu, China, 2011, pp. 61–64, DOI: https://doi.org/10.1109/ICEMI.2011.6037679

  56. Li, Z., Chen, Y., BLE2LoRa: cross-technology communication from bluetooth to LoRa via chirp emulation. 2020 17th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), 2020, pp. 1–9, DOI: https://doi.org/10.1109/SECON48991.2020.9158446

  57. Righetti, F., Vallati, C., Como la, D., Anastasi, G.: Performance measurements of IEEE 802.15.4g Wireless Networks. 2019 IEEE 20th International Symposium on "A World of Wireless, Mobile and Multimedia Networks" (WoWMoM), 2019, pp. 1–6, DOI: https://doi.org/10.1109/WoWMoM.2019.8793051

  58. Design, S., Bhatia, A.A.R., Bhirangi, A., Siddiqua, A.: LoRa for the last mile connectivity in IoT," 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART), 2020, pp. 195–200, DOI: https://doi.org/10.1109/SMART50582.2020.9337114

  59. Niu, J., Zhang, R., Wang, G., Li, S., Wan, S.: Design and experimental evaluation of long-distance and high-mobility ZigBee transceivers for WSNs. 2013 IEEE/CIC International Conference on Communications in China - Workshops (CIC/ICCC), Xi'an, China, 2013, pp. 142–147, DOI: https://doi.org/10.1109/ICCChinaW.2013.6670583

  60. Biswas, S., Mrinal, Y.M.K.P.M., Bhardwaj, E., Santhosh, S., S.M.I.: The firefly unit: a MANET based communication system using Zigbee and LoRaWAN protocols for IoT applications in Remote Locations. 2021 International Conference on Advanced Computing and Innovative Technologies in Engineering (ICACITE), 2021, pp. 642–646, DOI: https://doi.org/10.1109/ICACITE51222.2021.9404591

  61. Hongfu, G.; Lina, B.; Zhihua, G.: Estimation method for the transmission distance for the 2.4GHz Zigbee application. J. Xidian Univ. 36(4), 691–696 (2009)

    Google Scholar 

  62. Sittakul, V., Pasakawee, S., Kovintavewat, P.: Data transmission of Zigbee over Fiber. 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Jeju, Korea (South), 2019, pp. 1–4, DOI: https://doi.org/10.1109/ITC-CSCC.2019.8793406

Download references

Acknowledgements

This project was partly supported by Key Laboratory of Universal Wireless Communications (BUPT), Ministry of Education, P.R.China under grant KFKT-2020102 and partly supported by National Natural Science Foundations of China under grant 61821001 and 61531007 and supported by the Fundamental Research Funds for the Central Universities, BUPT under grant 2021RC07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Yu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yu, J., Bi, K. et al. A 2.4 GHz Bidirectional Power Amplifier Extending Nodes Distance of Transmission to 14.8 km for Amorphous Flat Air-to-ground Wireless Ad hoc Network. Arab J Sci Eng 47, 3239–3254 (2022). https://doi.org/10.1007/s13369-021-06089-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06089-2

Keyword

Navigation