Skip to main content
Log in

Geochemical Characterization of Subsurface Upper Ordovician Glaciogenic Deposits: Implications for Provenance, Tectonic Setting, and Depositional Environments

  • Research Article-Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Ancient glaciogenic deposits contain significant hydrocarbon reservoirs in the Middle East and North Africa. For instance, the Lower Paleozoic glaciogenic deposits of Saudi Arabia are a potential unconventional gas reservoir in the Rub’ al Khali Basin. In addition, they contain significant reservoir intervals in other basins. Although the sedimentological and stratigraphical characteristics of these glaciogenic deposits are fairly well understood, their provenance, tectonic setting, and the impact of weathering on the subsurface rocks of these deposits are not well constrained. Therefore, this study used geochemical data to characterize the depositional environments and investigate the provenance and tectonic setting of Hirnantian glaciogenic deposits. Four facies associations (FAs)—namely, fluvial (FA1), glaciolacustrine (FA2), subglacial (FA3) and glaciofluvial (FA4)—from the Upper Ordovician Sarah Formation were selected for this study. It was found that the maturity of the FA1 and FA4 sediments (average SiO2/Al2O3 > 27.1 ± 5.4) was higher than that of FA2 and FA3 (average SiO2/Al2O3 < 14 ± 1.8). Furthermore, FA1 and FA4 showed similar geochemical patterns (SiO2 > 90%), although the latter was deposited in a more proximal setting than the former, as interpreted from core samples. In contrast, FA2 and FA3 contain more geochemical variations and greater chemical weathering impacts than FA1 and FA4, as indicated by several chemical indices (e.g., Parker’s Weathering Index). The results also indicated that all the studied FAs were deposited in a passive margin and were most probably derived from continental felsic rocks of the Arabian Shield. These findings are not only crucial in predicting the reservoir quality of such deposits, but also contribute to the understanding of the geochemical distributions, associations, affinities and variabilities in Upper Ordovician glaciogenic deposits, and the extent of these deposits on the Arabian Plate, associated with a large ice sheet in northern Gondwana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Huuse, M.; Le Heron, D.P.; Dixon, R.; Redfern, J.; Moscariello, A.; Craig, J.: Glaciogenic reservoirs and hydrocarbon systems: an introduction. Geol. Soc. Spec. Publ. 368, 1–28 (2012). https://doi.org/10.1144/SP368.19

    Article  Google Scholar 

  2. Alqubalee, A.; Abdullatif, O.; Babalola, L.; Makkawi, M.: Characteristics of Paleozoic tight gas sandstone reservoir: integration of lithofacies, paleoenvironments, and spectral gamma-ray analyses, Rub’ al Khali Basin Saudi Arabia. Arab. J. Geosci. 12, 344 (2019). https://doi.org/10.1007/s12517-019-4467-0

    Article  Google Scholar 

  3. Hirst, J.P.P.: Ordovician proglacial sediments in Algeria: insights into the controls on hydrocarbon reservoirs in the In Amenas field, Illizi Basin. Geol. Soc. Lond. Spec. Publ. 368, 319–353 (2012). https://doi.org/10.1144/SP368.17

    Article  Google Scholar 

  4. Alqubalee, A.; Babalola, L.; Abdullatif, O.; Makkawi, M.: Factors controlling reservoir quality of a paleozoic tight sandstone, Rub’al Khali Basin Saudi Arabia. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-03885-9

    Article  Google Scholar 

  5. Bhatia, M.R.; Crook, K.A.W.: Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol. 92, 181–193 (1986). https://doi.org/10.1007/BF00375292

    Article  Google Scholar 

  6. Bhatia, M.R.: Plate tectonics and geochemical composition of sandstones. J. Geol. 91, 611–627 (1983). https://doi.org/10.1086/628922

    Article  Google Scholar 

  7. Basu, A.; Bickford, M.E.; Deasy, R.: Inferring tectonic provenance of siliciclastic rocks from their chemical compositions: a dissent. Sediment. Geol. 336, 26–35 (2016). https://doi.org/10.1016/j.sedgeo.2015.11.013

    Article  Google Scholar 

  8. Roser, B.P.; Korsch, R.J.: Determination of tectonic setting of sandstone-mudstone suites using SiO2-content and K2O/Na2O ratio. J. Geol. 94, 635–650 (1986). https://doi.org/10.2307/30078330

    Article  Google Scholar 

  9. Roser, B.P.; Korsch, R.J.: Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol. 67, 119–139 (1988). https://doi.org/10.1016/0009-2541(88)90010-1

    Article  Google Scholar 

  10. Verma, S.P.; Armstrong-Altrin, J.S.: Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sediment. Geol. 332, 1–12 (2016). https://doi.org/10.1016/j.sedgeo.2015.11.011

    Article  Google Scholar 

  11. Verma, S.P.; Armstrong-Altrin, J.S.: New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins. Chem. Geol. 355, 117–133 (2013). https://doi.org/10.1016/j.chemgeo.2013.07.014

    Article  Google Scholar 

  12. Verma, S.P.; Díaz-González, L.; Armstrong-Altrin, J.S.: Application of a new computer program for tectonic discrimination of Cambrian to Holocene clastic sediments. Earth Sci. Inf. 9, 151–165 (2016). https://doi.org/10.1007/s12145-015-0244-0

    Article  Google Scholar 

  13. Armstrong-Altrin, J.S.; Verma, S.P.: Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sediment. Geol. 177, 115–129 (2005). https://doi.org/10.1016/j.sedgeo.2005.02.004

    Article  Google Scholar 

  14. Armstrong-Altrin, J.S.: Detrital zircon U-Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: a new insight on palaeoenvironment. J. Palaeogeogr. (2020). https://doi.org/10.1186/s42501-020-00075-9

    Article  Google Scholar 

  15. Armstrong-Altrin, J.S.; Ramos-Vázquez, M.A.; Zavala-León, A.C.; Montiel-García, P.C.: Provenance discrimination between Atasta and Alvarado beach sands, western Gulf of Mexico, Mexico: Constraints from detrital zircon chemistry and U-Pb geochronology. Geol. J. 53, 2824–2848 (2018). https://doi.org/10.1002/gj.3122

    Article  Google Scholar 

  16. Armstrong-Altrin, J.S.; Botello, A.V.; Villanueva, S.F.; Soto, L.A.: Geochemistry of surface sediments from the northwestern gulf of Mexico: implications for provenance and heavy metal contamination. Geol. Q. 63, 522–538 (2019). https://doi.org/10.7306/gq.1484

    Article  Google Scholar 

  17. Yang, J.; Cawood, P.A.; Du, Y.; Li, W.; Yan, J.: Reconstructing Early Permian tropical climates from chemical weathering indices. Bull. Geol. Soc. Am. 128, 739–751 (2016). https://doi.org/10.1130/B31371.1

    Article  Google Scholar 

  18. Garzanti, E.; Padoan, M.; Setti, M.; López-Galindo, A.; Villa, I.M.: Provenance versus weathering control on the composition of tropical river mud (southern Africa). Chem. Geol. 366, 61–74 (2014). https://doi.org/10.1016/j.chemgeo.2013.12.016

    Article  Google Scholar 

  19. Singh, P.: Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes. Chem. Geol. 266, 242–255 (2009). https://doi.org/10.1016/j.chemgeo.2009.06.013

    Article  Google Scholar 

  20. Maharana, C.; Srivastava, D.; Tripathi, J.K.: Geochemistry of sediments of the Peninsular rivers of the Ganga basin and its implication to weathering, sedimentary processes and provenance. Chem. Geol. 483, 1–20 (2018). https://doi.org/10.1016/j.chemgeo.2018.02.019

    Article  Google Scholar 

  21. Johnsson, M.J.: The system controlling the composition of clastic sediments. In: Special Paper of the Geological Society of America, pp. 1–20 (1993). https://doi.org/10.1130/SPE284-p1

  22. Mazumder, R.: Sediment provenance: Influence on compositional change from source to sink. In: Sediment Provenance: Influences on Compositional Change from Source to Sink, pp. 1–4. Elsevier (2016). https://doi.org/10.1016/B978-0-12-803386-9.00001-0

  23. Garzanti, E.: The maturity myth in sedimentology and provenance analysis. J. Sediment. Res. 87, 353–365 (2017). https://doi.org/10.2110/jsr.2017.17

    Article  Google Scholar 

  24. Hayton, S.; Heine, C.; Gratto, B.E.: Tight gas exploration in Saudi Arabia. In: SPE Deep Gas Conference and Exhibition. Society of Petroleum Engineers (2010). https://doi.org/10.2118/131065-MS

  25. Sahin, A.: Unconventional natural gas potential in Saudi Arabia. SPE Middle East Oil Gas Show Conf. MEOS Proc. 3, 1673–1681 (2013). https://doi.org/10.2118/164364-ms

    Article  Google Scholar 

  26. Craigie, N.W.; Rees, A.; MacPherson, K.; Berman, S.: Chemostratigraphy of the ordovician sarah formation, North West Saudi Arabia: an integrated approach to reservoir correlation. Mar. Pet. Geol. 77, 1056–1080 (2016). https://doi.org/10.1016/j.marpetgeo.2016.07.009

    Article  Google Scholar 

  27. Vaslet, D.: Upper ordovician glacial deposits in Saudi-Arabia. Episodes 13, 147–161 (1990)

    Article  Google Scholar 

  28. Senalp, M.; Al-Laboun, A.: New evidence on the Late Ordovician glaciation in central Saudi Arabia. Saudi Aramco J. Technol. Spring, pp. 11–40 (2000)

  29. Melvin, J.: Lithostratigraphy and depositional history of Upper Ordovician and lowermost Silurian sediments recovered from the Qusaiba-1 shallow core hole, Qasim region, central Saudi Arabia. Rev. Palaeobot. Palynol. 212, 3–21 (2015). https://doi.org/10.1016/j.revpalbo.2014.08.014

    Article  Google Scholar 

  30. Tofaif, S.; Le Heron, D.P.; Melvin, J.: Development of a palaeovalley complex on a Late Ordovician glaciated margin in NW Saudi Arabia. Geol. Soc. Lond. Spec. Publ. 475, 81–107 (2018). https://doi.org/10.1144/sp475.8

    Article  Google Scholar 

  31. Clark-Lowes, D.D.: Arabian glacial deposits: recognition of palaeovalleys within the Upper Ordovician Sarah Formation, Al Qasim district Saudi Arabia. Proc. Geol. Assoc. 116, 331–347 (2005). https://doi.org/10.1016/S0016-7878(05)80051-3

    Article  Google Scholar 

  32. Michael, N.A.; Zuhlke, R.; Hayton, S.: The palaeo-valley infilling glaciogenic Sarah Formation, an example from Rahal Dhab palaeo-valley Saudi Arabia. Sedimentology (2017). https://doi.org/10.1111/sed.12408

    Article  Google Scholar 

  33. Keller, M.; Hinderer, M.; Al-Ajmi, H.; Rausch, R.: Palaeozoic glacial depositional environments of SW Saudi Arabia: process and product. Geol. Soc. Lond. Spec. Publ. 354, 129–152 (2011). https://doi.org/10.1144/SP354.8

    Article  Google Scholar 

  34. Yassin, M.A.; Abdullatif, O.M.: Chemostratigraphic and sedimentologic evolution of Wajid Group (Wajid Sandstone): an outcrop analog study from the Cambrian to Permian, SW Saudi Arabia. J. Afr. Earth Sci. 126, 159–175 (2017). https://doi.org/10.1016/j.jafrearsci.2016.11.029

    Article  Google Scholar 

  35. Al-Harbi, O.A.; Khan, M.M.: Source and origin of glacial paleovalley-fill sediments (Upper Ordovician) of Sarah Formation in central Saudi Arabia. Arab. J. Geosci. 4, 825–835 (2011)

    Article  Google Scholar 

  36. Bassis, A.; Hinderer, M.; Meinhold, G.: Petrography and geochemistry of Palaeozoic quartz-rich sandstones from Saudi Arabia: implications for provenance and chemostratigraphy. Arab. J. Geosci. (2016). https://doi.org/10.1007/s12517-016-2412-z

    Article  Google Scholar 

  37. Bassis, A.; Hinderer, M.; Meinhold, G.: New insights into the provenance of Saudi Arabian Palaeozoic sandstones from heavy mineral analysis and single-grain geochemistry. Sediment. Geol. 333, 100–114 (2016). https://doi.org/10.1016/j.sedgeo.2015.12.009

    Article  Google Scholar 

  38. Johnson, P.R.: Explanatory notes to the map of Proterozoic geology of western Saudi Arabia. Saudi Geological Survey Technical Report SGS-TR-2006–4, pp. 1–62. (2006)

  39. Stoeser, D.B.; Frost, C.D.: Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chem. Geol. 226, 163–188 (2006). https://doi.org/10.1016/j.chemgeo.2005.09.019

    Article  Google Scholar 

  40. Hargrove, U.S.; Stern, R.J.; Kimura, J.I.; Manton, W.I.; Johnson, P.R.: How juvenile is the Arabian-Nubian Shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircon in the Bi’r Umq suture zone Saudi Arabia. Earth Planet. Sci. Lett. 252, 308–326 (2006). https://doi.org/10.1016/j.epsl.2006.10.002

    Article  Google Scholar 

  41. Stern, R.J.; Johnson, P.: Continental lithosphere of the Arabian Plate: a geologic, petrologic, and geophysical synthesis. Earth Sci. Rev. 101, 29–67 (2010). https://doi.org/10.1016/j.earscirev.2010.01.002

    Article  Google Scholar 

  42. Johnson, P.R.; Woldehaimanot, B.: Development of the Arabian-Nubian Shield: Perspectives on accretion and deformation in the northern East African Orogen and the assembly of Gondwana. Geol. Soc. Spec. Publ. 206, 289–325 (2003). https://doi.org/10.1144/GSL.SP.2003.206.01.15

    Article  Google Scholar 

  43. Johnson, P.R.; Andresen, A.; Collins, A.S.; Fowler, A.R.; Fritz, H.; Ghebreab, W.; Kusky, T.; Stern, R.J.: Late Cryogenian-Ediacaran history of the Arabian-Nubian Shield: a review of depositional, plutonic, structural, and tectonic events in the closing stages of the northern East African Orogen, (2011)

  44. Johnson, P.R.; Kattan, F.: Oblique sinistral transpression in the Arabian shield: the timing and kinematics of a Neoproterozoic suture zone. Precambrian Res. 107, 117–138 (2001). https://doi.org/10.1016/S0301-9268(00)00157-1

    Article  Google Scholar 

  45. Johnson, P.R.: Tectonic map of Saudi Arabia and adjacent areas. Deputy Minist. Miner. Resour. Tech. Rep. 3, 2 (1998)

    Google Scholar 

  46. Johnson, P.R.; Halverson, G.P.; Kusky, T.M.; Stern, R.J.; Pease, V.: Volcanosedimentary basins in the arabian-nubian shield: markers of repeated exhumation and denudation in a neoproterozoic accretionary Orogen. Geosci. 3, 389–445 (2013). https://doi.org/10.3390/geosciences3030389

    Article  Google Scholar 

  47. Gettings, M.E.; Blank, H.R.; Mooney, W.D.; Healey, J.H.: Crustal structure of southwestern Saudi Arabia. J. Geophys. Res. 91, 6491 (1986). https://doi.org/10.1029/jb091ib06p06491

    Article  Google Scholar 

  48. Konert, G.; Afifi, A.M.; Al-Hajri, S.A.; De Groot, K.; Al Naim, A.A.; Droste, H.J.: Paleozoic stratigraphy and hydrocarbon habitat of the Arabian plate. GeoArabia. 6, 407–442 (2001). https://doi.org/10.1306/M74775C24

    Article  Google Scholar 

  49. McClure, H.A.: Early paleozoic glaciation in Arabia Palaeogeogr. Palaeoclimatol. Palaeoecol. 25, 315–326 (1978). https://doi.org/10.1016/0031-0182(78)90047-0

    Article  Google Scholar 

  50. Al-Ajmi, H.F.; Keller, M.; Hinderer, M.; Filomena, C.M.: Lithofacies, depositional environments and stratigraphic architecture of the Wajid Group outcrops in southern Saudi Arabia. GeoArabia. 20, 49–94 (2015)

    Article  Google Scholar 

  51. Abed, A.M.; Makhlouf, I.M.; Amireh, B.S.; Khalil, B.: Upper Ordovician glacial deposits in southern Jordan. Episodes 16, 316–328 (1993). https://doi.org/10.18814/epiiugs/1993/v16i1.2/003

    Article  Google Scholar 

  52. Amireh, B.S.; Schneider, W.; Abed, A.M.: Fluvial-shallow marine-glaciofluvial depositional environments of the Ordovician System in Jordan. J. Asian Earth Sci. 19, 45–60 (2001). https://doi.org/10.1016/S1367-9120(00)00010-9

    Article  Google Scholar 

  53. Turner, B.R.; Makhlouf, I.M.; Armstrong, H.A.: Late Ordovician (Ashgillian) glacial deposits in southern Jordan. Sediment. Geol. 181, 73–91 (2005). https://doi.org/10.1016/j.sedgeo.2005.08.004

    Article  Google Scholar 

  54. Vaslet, D.; Kellogg, K.; Berthiaux, A.; Strat, P.; Le Vincent, P.: Geologic map of the Baq’a quadrangle, sheet 27F, Kingdom of Saudi Arabia, (1987)

  55. Williams, P.L.; Vaslet, D.; Johnson, P.R.; Berthiaux, A.; Le Strat, P.; Foumiguet, J.: Geologic map of the Jabal Habashi quadrangle, sheet 26F. Kingdom Saudi Arab. Saudi Arab. Deputy Minist. Miner. Resour. Geosci. Map-GM-98 A, Scale 1250,000. (1986)

  56. Clark-Lowes, D.D.: Sedimentology and mineralization potential of Saq and Tabuk formations. Imp. Coll. Sci. Technol. London, Open-File Rep. CRC/IC. 7, (1980)

  57. SSC.: Phanerozoic Stratigraphy of Saudi Arabia Part 1. Saudi Geological Survey (2013)

  58. Laboun, A.A.; Al-Laboun, A.A.: Paleozoic tectono-stratigraphic framework of the Arabian Peninsula. J. King Saud Univ. Sci. 22, 41–50 (2010). https://doi.org/10.1016/j.jksus.2009.12.007

    Article  Google Scholar 

  59. MCGillivray, J.; Husseini, M.: The paleozoic petroleum geology of central Arabia. Am. Assoc. Pet. Geol. Bull. 76, 1473–1490 (1992). https://doi.org/10.1306/BDFF8A1A-1718-11D7-8645000102C1865D

    Article  Google Scholar 

  60. Adebayo, A.R.; Babalola, L.; Hussaini, S.R.; Alqubalee, A.; Babu, R.S.: Insight into the pore characteristics of a Saudi Arabian tight gas sand reservoir. Energies 12, 4302 (2019). https://doi.org/10.3390/en12224302

    Article  Google Scholar 

  61. Goodall, W.: XRD and QEMSCAN mineralogy: Redundant or Complementary? https://minassist.com.au/xrd-and-qemscanmineralogy-redundant-or-complementary (2009)

  62. Ayling, B.; Rose, P.; Petty, S.; Zemach, E.; Drakos, P.: QEMSCAN® (Quantitative Evaluation of Minerals by Scanning Electron Microscopy): capability and application to fracture characterization in geothermal systems. Geotherm. Reserv. Eng. Work., p. 11 (2012)

  63. Qian, G.; Li, Y.; Gerson, A.R.: Applications of surface analytical techniques in Earth Sciences. Surf. Sci. Rep. 70, 86–133 (2015). https://doi.org/10.1016/j.surfrep.2015.02.001

    Article  Google Scholar 

  64. R-CoreTeam: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006, (2019)

  65. Harrell Jr, F.E.; Dupont, M.C.; Harrell, F.E.; Dupont, M.C.: The Hmisc Package, (2006)

  66. Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; Kuhn, M.; Pedersen, T.; Miller, E.; Bache, S.; Müller, K.; Ooms, J.; Robinson, D.; Seidel, D.; Spinu, V.; Takahashi, K.; Vaughan, D.; Wilke, C.; Woo, K.; Yutani, H.: Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019). https://doi.org/10.21105/joss.01686

    Article  Google Scholar 

  67. Wei, T.; Simko, V.: Visualization of a Correlation Matrix: Package “corrplot,” https://cran.r-project.org/web/packages/corrplot/index.html, (2016)

  68. Lê, S.; Josse, J.; Husson, F.: FactoMineR: an R package for multivariate analysis. J. Stat. Softw. 25, 1–18 (2008). https://doi.org/10.18637/jss.v025.i01

    Article  Google Scholar 

  69. Kassambara, A.; Mundt, F.: Package “factoextra” for R: Extract and Visualize the Results of Multivariate Data Analyses, (2017)

  70. Parker, A.: An index of weathering for silicate rocks. Geol. Mag. 107, 501–504 (1970). https://doi.org/10.1017/S0016756800058581

    Article  Google Scholar 

  71. Roaldset, E.: Mineralogy and geochemistry of quaternary clays in the Numedal area, southern Norway. Nor. Geol. Tidsskr. 52, 335–369 (1972)

    Google Scholar 

  72. Vogel, D.E.: Precambrian weathering in acid metavolcanic rocks from the superior province, Villebon Township South-Central Québec. Can. J. Earth Sci. 12, 2080–2085 (1975). https://doi.org/10.1139/e75-183

    Article  Google Scholar 

  73. Nesbitt, H.W.; Young, G.M.: Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717 (1982). https://doi.org/10.1038/299715a0

    Article  Google Scholar 

  74. Harnois, L.: The CIW index: a new chemical index of weathering. Sediment. Geol. 55, 319–322 (1988). https://doi.org/10.1016/0037-0738(88)90137-6

    Article  Google Scholar 

  75. Fedo, C.M.; Wayne Nesbitt, H.; Young, G.M.: Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology (1995). https://doi.org/10.1130/0091-7613(1995)023%3c0921:uteopm%3e2.3.co;2

    Article  Google Scholar 

  76. Cullers, R.L.: The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos 51, 181–203 (2000). https://doi.org/10.1016/S0024-4937(99)00063-8

    Article  Google Scholar 

  77. Buggle, B.; Glaser, B.; Hambach, U.; Gerasimenko, N.; Marković, S.: An evaluation of geochemical weathering indices in loess-paleosol studies. Quat. Int. 240, 12–21 (2011). https://doi.org/10.1016/j.quaint.2010.07.019

    Article  Google Scholar 

  78. Cox, R.; Lowe, D.R.; Cullers, R.L.: The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta. 59, 2919–2940 (1995). https://doi.org/10.1016/0016-7037(95)00185-9

    Article  Google Scholar 

  79. Taylor, S.R.; McLennan, S.M.: The Continental Crust: Its Composition and Evolution. Blackwell Science, Malden (1985)

    Google Scholar 

  80. Condie, K.C.: Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol. (1993). https://doi.org/10.1016/0009-2541(93)90140-E

    Article  Google Scholar 

  81. Craigie, N.W.; Rees, A.J.: Chemostratigraphy of glaciomarine sediments in the Sarah Formation, Northwest Saudi Arabia. J. African Earth Sci. 117, 263–284 (2016). https://doi.org/10.1016/j.jafrearsci.2016.02.006

    Article  Google Scholar 

  82. Pettijohn, F.J.; Potter, P.E.; Siever, R.: Sand and Sandstone. Springer, New York (1972)

    Google Scholar 

  83. Herron, M.M.: Geochemical classification of terrigenous sands and shales from core or log data. J. Sediment. Res. 58, 820–829 (1988). https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  84. Folk, R.L.: Petrology of Sedimentary Rocks: Austin. Hemphill Publishing Company, Texas (1980)

    Google Scholar 

  85. Sutcliffe, O.E.; Dowdeswell, J.A.; Whittington, R.J.; Theron, J.N.; Craig, J.: Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity cycles of Earth’s orbit. Geology 28, 967–970 (2000). https://doi.org/10.1130/0091-7613(2000)28%3c967:CTLOGA%3e2.0.CO;2

    Article  Google Scholar 

  86. Ghienne, J.-F.; Le Heron, D.P.; Moreau, J.; Denis, M.;Deynoux, M.: The Late Ordovician Glacial Sedimentary System of the North Gondwana Platform. In: Glacial Sedimentary Processes and Products. pp. 295–319 (2007)

  87. Lewin, A.; Meinhold, G.; Hinderer, M.; Dawit, E.L.; Bussert, R.: Provenance of sandstones in Ethiopia during Late Ordovician and Carboniferous-Permian Gondwana glaciations: Petrography and geochemistry of the Enticho Sandstone and the Edaga Arbi Glacials. Sediment. Geol. 375, 188–202 (2018). https://doi.org/10.1016/j.sedgeo.2017.10.006

    Article  Google Scholar 

  88. Meinhold, G.; Bassis, A.; Hinderer, M.; Lewin, A.; Berndt, J.: Detrital zircon provenance of north Gondwana Palaeozoic sandstones from Saudi Arabia. Geol. Mag. 158, 442–458 (2021). https://doi.org/10.1017/S0016756820000576

    Article  Google Scholar 

  89. McLennan, S.M.: Weathering and global denudation. J. Geol. 101, 295–303 (1993). https://doi.org/10.1086/648222

    Article  Google Scholar 

  90. McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N.: Geochemical approaches to sedimentation, provenance, and tectonics. Spec. Pap. Geol. Soc. Am. 284, 21–40 (1993). https://doi.org/10.1130/SPE284-p21

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge King Fahd University of Petroleum and Minerals for supporting research facilities and funds (SF19031) and the King Abdulaziz City for Science and Technology for providing funding as part of the National Science, Technology, and Technology Innovation Plan (NSTIP Project # 14-OIL468-04). The authors would also like to thank the Ministry of Energy, Saudi Arabia, for providing the core samples and giving permission to publish the outcomes of this study. The authors also thank Dr. Neil Craigie and Dr. John Armstrong-Altrin for their efforts during the first stage of this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdullah M. Alqubalee or Lameed O. Babalola.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (RAR 636 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqubalee, A.M., Babalola, L.O., Abdullatif, O.M. et al. Geochemical Characterization of Subsurface Upper Ordovician Glaciogenic Deposits: Implications for Provenance, Tectonic Setting, and Depositional Environments. Arab J Sci Eng 47, 7273–7291 (2022). https://doi.org/10.1007/s13369-021-06066-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06066-9

Keywords

Navigation