Skip to main content
Log in

Performance Assessment of Light-Emitting Diodes Using Multi-Domain Compact Models

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, guidelines are provided for designing illumination-grade light-emitting diodes (LEDs) into luminaires. A generalized concept of deriving a multi-domain compact model of LED from data-sheet information is discussed, however, the process described can be applied to the design of any kind of LED luminaire. The most critical aspect of LED luminaire design is to decide on how many LEDs are required to meet the design goals. The rest of the design process revolves around the number of LEDs since it directly impacts the optical, electrical, and thermal aspects of a luminaire. The design process is not simple as it seems, it is not estimating the number of LEDs based on photometric characteristics listed on their datasheets and divides the target lumens from the design goals by that number. However, this approach looks too simple but not always will lead to a design that will meet the application’s illumination requirements. The photometric properties of a LED are dependent on a variety of factors, including drive current and junction temperature. The accurate number of LEDs can be estimated only when the inefficiencies of the optical, thermal and electrical systems are accounted for in the design process. This work serves as a guide to estimate some of the major losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Gupta, V.; Ghosh, K.; Roy, B.: Design topology based comparative study on electric and photometric parameters of commercially available led lamp systems. In 2017 2nd International Conference for Convergence in Technology (I2CT), (Mumbai), pp. 116–123, IEEE, (2017)

  2. De, D.; Sahana, S.; Roy, B.: Performance analysis of fluorescent and led lamp system. In 2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE), (Kolkata, India), pp. 1–6, IEEE, (2016)

  3. Gupta, V.; Basak, B.; Ghosh, K.; Roy, B.: Stability analysis of a universal LED driver. In 2017 IEEE Calcutta Conference (CALCON), (Kolkata, India), pp. 279–283, IEEE, (2017)

  4. Rahman, O.; Elphick, S.; Muttaqi, K.M.; David, J.: Investigation of led lighting performance in the presence of ripple injection load control signals. IEEE Trans. Ind. Appl. 55(5), 5436–5444 (2019)

    Article  Google Scholar 

  5. Ghosh, K.; Raul, D.: Performance analysis of various types of high power light emitting diodes. Light & Engineering, pp. 91–98, (2018)

  6. Raul, D.; Ghosh, K.: Analysis on thermal behaviour of the sink and die area with different thermal interface material for high power light emitting diodes. Light & Engineering, pp. 116–126, (2020)

  7. Janicki, M.; Ptak, P.; Torzewicz, T.; Górecki, K.: Compact thermal modeling of modules containing multiple power leds. Energies, 13(12), (2020)

  8. Janicki, M.; Torzewicz, T.; Ptak, P.; Raszkowski, T.; Samson, A., Górecki, K.: Parametric compact thermal models of power leds. Energies, 12(9), (2019)

  9. Górecki, K.; Ptak, P.: Thermal, photometric and radiometric properties of multi-color leds situated on the common pcb. Electronics, 9(10), (2020)

  10. Raul, D.; Ghosh, K.: Performance of chip-on-board and surface-mounted high-power LED luminaires at different relative humidities and temperatures. Lighting Res. Technol. 51, 1249–1262 (2018)

    Article  Google Scholar 

  11. Law, T.K.; Lim, F.: A practical degradation based method to predict long-term moisture incursion and color change in high power leds. IEEE Photonics J. 10(5), 1–14 (2018)

    Article  Google Scholar 

  12. Ruknudeen, F.; Asokan, S.: Application of particle filter to on-board life estimation of led lights. IEEE Photonics J. 9(3), 1–16 (2017)

    Article  Google Scholar 

  13. Ibrahim, M.S.; Fan, J.; Yung, W.K.C.; Prisacaru, A.; Driel, W.; Fan, X.; Zhang, G.: Machine learning and digital twin driven diagnostics and prognostics of light-emitting diodes. Laser Photonics Rev. 14, 2000254 (2020)

    Article  Google Scholar 

  14. Liu, H.; Yu, D.; Niu, P.; Zhang, Z.; Guo, K.; Wang, D.; Zhang, J.; Ma, X.; Jia, C.; Wu, C.: Lifetime prediction of a multi-chip high-power LED light source based on artificial neural networks. Results Phys. 12, 361–367 (2019)

    Article  Google Scholar 

  15. Kıyak, İ; Gökmen, G.; Koçyiğit, G.: Lifetime prediction for a cell-on-board (COB) light source based on the adaptive neuro-fuzzy inference system (ANFIS). J. Nanomater. 2021, 1–10 (2021)

    Article  Google Scholar 

  16. Ruknudeen, F.; Gervasis, S.; Viswambharan, V.; Asokan, S.: An on-board life estimation technique for lights using high power white LEDs. J. Display Technol. 12, 938–945 (2016)

    Article  Google Scholar 

  17. Rammohan, R.: Kumar, and Chandramohan, Experimental analysis on estimating junction temperature and service life of high power LED array. Microelectron. Reliability 120, 114121 (2021)

    Article  Google Scholar 

  18. Poppe, A.; Farkas, G.; Gaál, L.; Hantos, G.; Hegedüs, J.; Rencz, M.: Multi-domain modelling of leds for supporting virtual prototyping of luminaires. Energies, 12(10), (2019)

  19. Martin, G.; Yu, J.; van der Schans, M.; Onushkin, G.: Multi-domain LED digital twin generation and its corresponding product digital design flow: Delphi4LED state-of-the-art and outlook. In Light-Emitting Devices, Materials, and Applications XXV (J. K. Kim, M. R. Krames, and M. Strassburg, eds.), vol. 11706, pp. 115 – 124. International Society for Optics and Photonics, SPIE, (2021)

  20. Pohl, L.; Hantos, G.; Hegedüs, J.; Németh, M.; Kohári, Z.; Poppe, A.: Mixed detailed and compact multi-domain modeling to describe cob leds. Energies, 13(16), (2020)

  21. Baran, K.; Różowicz, A.; Wachta, H.; Różowicz, S.: Modeling of selected lighting parameters of led panel. Energies, 13(14), (2020)

  22. Górecki, K.; Ptak, P.: Compact modelling of electrical, optical and thermal properties of multi-colour power leds operating on a common pcb. Energies, 14(5), (2021)

  23. Hui, S.Y.; Lee, A.T.L.; Tan, S.-C.: New dynamic photo-electro-thermal modeling of light-emitting diodes with phosphor coating as light converter part i: Theory, analysis, and modeling. IEEE J. Emerging Selected Topics Power Electron. 8(1), 771–779 (2020)

  24. Poppe, A.: Simulation of LED based luminaires by using multi-domain compact models of LEDs and compact thermal models of their thermal environment. Microelectron. Reliability 72, 65–74 (2017)

    Article  Google Scholar 

  25. Górecki, K.; Górecki, P.: Nonlinear compact thermal model of the igbt dedicated to spice. IEEE Trans. Power Electron. 35(12), 13420–13428 (2020)

    Article  Google Scholar 

  26. Hui, S.; Qin, Y.: A general photo-electro-thermal theory for light emitting diode (LED) systems. IEEE Trans. Power Electron. 24, 1967–1976 (2009)

    Article  Google Scholar 

  27. Hui, S.Y.R.; Chen, H.; Tao, X.: An extended photoelectrothermal theory for led systems: A tutorial from device characteristic to system design for general lighting. IEEE Trans. Power Electron. 27, 4571–4583 (2012)

    Article  Google Scholar 

  28. Górecki, K.; Ptak, P.: New dynamic electro-thermo-optical model of power LEDs. Microelectron. Reliab. 91, 1–7 (2018)

    Article  Google Scholar 

  29. Bein, M. C.; Bornoff, R.; Farkas, G.; Gaal, L.; Poppe, A.; Rencz, M.: Measurement-based multi-domain modeling of leds for industry 4.0. In 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), (Las Vegas, NV, USA), pp. 23–30, (2019)

  30. Farkas, G.; Gaál, L.; Poppe, A.; Rencz, M.; Bornoff, R.: Led multiphysics modeling for industry 4.0, an approach proposed by the delphi 4led european project. In 2018 IEEE 20th Electronics Packaging Technology Conference (EPTC), (Singapore), pp. 954–960, (2018)

  31. Sari, J.; Mérelle, T.; Di Bucchianico, A.; Breton, D.: Delphi4led: Led measurements and variability analysis. In 2017 23rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), (Amsterdam, Netherlands), pp. 1–6, (2017)

  32. Alexeev, A.; Bornoff, R.; Lungten, S.; Martin, G.; Onushkin, G.; Poppe, A.; Rencz, M.; Yu, J.: Requirements specification for multi-domain led compact model development in delphi4led. In 2017 18th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)

  33. Bornoff, R.; Hildenbrand, V.; Lugten, S.; Martin, G.; Marty, C.; Poppe, A.; Rencz, M.; Schilders, W. H.; Yu, J.: Delphi4led – from measurements to standardized multi-domain compact models of led: A new european r d project for predictive and efficient multi-domain modeling and simulation of leds at all integration levels along the ssl supply chain. In 2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), (Budapest, Hungary), pp. 174–180, (2016)

  34. Biber, C.: LED light emission as a function of thermal conditions. In 2008 Twenty-fourth Annual IEEE Semionductor Thermal Measurement and Management Symposium, (San Jose, CA, USA), pp. 180–184, IEEE, (2008)

  35. Zhou, L.; Jing, G.; Liu, Y.; Luo, H.: On-line monitoring flip led chip performance degradation and failure analysis. In 2017 18th International Conference on Electronic Packaging Technology (ICEPT), (Harbin, China), pp. 1152–1156, (2017)

  36. Chan, C.-J.; Hsu, F.-M.; Su, Y. F.; Chiang, K. N.: Study on current and junction temperature stress aging effect for accelerated aging test of light emitting diodes. In 2016 International Conference on Electronics Packaging (ICEP), (Sapporo, Japan), pp. 62–65, (2016)

  37. Keppens, A.; Chen, H.; Lu, Y. J.; Chen, Z.; Gao, Y. L.; Deconinck, G.; Hanselaer, P.: Light-emitting diode junction temperature and power determination from forward current. Light Eng. 19, 34–44 (2011)

    Google Scholar 

  38. Keppens, A.; Ryckaert, W.R.; Deconinck, G.; Hanselaer, P.: High power light-emitting diode junction temperature determination from current-voltage characteristics. J. Appl. Phys. 104(9), 093104 (2008)

    Article  Google Scholar 

  39. Chen, H.T.; Tao, X.H.; Hui, S.Y.R.: Estimation of optical power and heat-dissipation coefficient for the photo-electro-thermal theory for led systems. IEEE Trans. Power Electron. 27, 2176–2183 (2012)

    Article  Google Scholar 

  40. Chen, H.; Hui, S.Y.: Dynamic prediction of correlated color temperature and color rendering index of phosphor-coated white light-emitting diodes. IEEE Trans. Industr. Electron. 61, 784–797 (2014)

    Article  Google Scholar 

  41. Osram Opto Semiconductors, DURIS P8. Data sheet V1.3, 2017.

  42. Sa, E. M.; Antunes, F. L. M.; Perin, A. J.: Junction temperature estimation for high power light-emitting diodes. In 2007 IEEE International Symposium on Industrial Electronics, (Vigo, Spain), pp. 3030–3035, (2007)

  43. Wei, J.; Yi, Z.; Wang, L.; Liu, L.; Wu, H.; Wang, G.; Zhang, B.: White led light emission as a function of current and junction temperature. In 2013 10th China International Forum on Solid State Lighting (ChinaSSL), (Beijing, China), pp. 166–169, (2013)

  44. Saguatti, D.; Bidinelli, L.; Verzellesi, G.; Meneghini, M.; Meneghesso, G.; Zanoni, E.; Butendeich, R.; Hahn, B.: Investigation of efficiency-droop mechanisms in multi-quantum-well ingan/gan blue light-emitting diodes. IEEE Trans. Electron Devices 59, 1402–1409 (2012)

    Article  Google Scholar 

  45. Laubsch, A.; Sabathil, M.; Baur, J.; Peter, M.; Hahn, B.: High-power and high-efficiency ingan-based light emitters. IEEE Trans. Electron Devices 57, 79–87 (2010)

    Article  Google Scholar 

  46. Zhao, L.; Yan, D.; Zhang, Z.; Hua, B.; Yang, G.; Cao, Y.; Zhang, E.X.; Gu, X.; Fleetwood, D.M.: Temperature-dependent efficiency droop in gan-based blue leds. IEEE Electron Device Lett. 39, 528–531 (2018)

    Article  Google Scholar 

  47. Li, Y.L.; Huang, Y.R.; Lai, Y.H.: Investigation of efficiency droop behaviors of ingan/gan multiple-quantum-well leds with various well thicknesses. IEEE J. Sel. Top. Quantum Electron. 15, 1128–1131 (2009)

    Article  Google Scholar 

  48. LED basics. Application note, September 2010.

  49. Dong, J.; Pandharipande, A.; van Driel, W.; Zhang, G.: Diagnosing lumen depreciation in led lighting systems: An estimation approach. IEEE Trans. Signal Process. 60, 3796–3808 (2012)

    Article  MathSciNet  Google Scholar 

  50. Dong, J.; Pandharipande, A.: Lumen depreciation diagnosis in modulated led lighting systems. IEEE Photonics Technol. Lett. 25, 1466–1469 (2013).

    Article  Google Scholar 

  51. Lall, P.; Wei, J.; Davis, L.: Prediction of lumen output and chromaticity shift in leds using kalman filter and extended kalman filter based models. In 2013 IEEE Conference on Prognostics and Health Management (PHM), (Gaithersburg, MD, USA), pp. 1–14, (2013)

  52. Qian, C.; Fan, J.; Fan, X.; Zhang, G.: Prediction of lumen depreciation and color shift for phosphor-converted white light-emitting diodes based on a spectral power distribution analysis method. IEEE Access 5, 24054–24061 (2017)

    Article  Google Scholar 

  53. Bobashev, G.; Baldasaro, N.G.; Mills, K.C.; Davis, J.L.: An efficiency-decay model for lumen maintenance. IEEE Trans. Device Mater. Reliab. 16, 277–281 (2016).

    Article  Google Scholar 

  54. Lu, G.; Yuan, C.; Fan, X.; Zhang, G. Q.: Correlation of activation energy between leds and luminaires in the lumen depreciation test. In 2014 15th International Conference on Thermal, Mechanical and Mulit-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), (Belgium), pp. 1–3, (2014)

  55. Song, B.-M.; Han, B.; Lee, J.-H.: Optimum design domain of led-based solid state lighting considering cost, energy consumption and reliability. Microelectron. Reliab. 53(3), 435–442 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Author acknowledges the infrastructure and support provided by Manipal Academy of Higher Education, Manipal, India during this study.

Funding

The author received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to K. R. Shailesh.

Ethics declarations

Conflict of interest

The author has declared that no conflict of interests exist.

Availability of Data and Material (Data Transparency)

Not applicable.

Code Availability (Software Application or Custom Code)

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shailesh, K.R. Performance Assessment of Light-Emitting Diodes Using Multi-Domain Compact Models. Arab J Sci Eng 47, 3069–3087 (2022). https://doi.org/10.1007/s13369-021-06055-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06055-y

Keywords

Navigation