Skip to main content
Log in

Optimal Directional Overcurrent Relay Coordination in Interconnected Networks Considering User-Defined PWL Characteristic Curve

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper develops a novel methodology to apply the piece-wise linear characteristic (PWLC) to coordinate the digital overcurrent relays (DOCRs) in meshed power systems regardless of their scales. In this approach, first, a table based on maximum short-circuit fault currents obtained using DIgSILENT software is produced in which the current seen by each relay is recorded by implementing a three-phase fault in front of other relays. Then, based on the fault currents achieved, the PWLC of each relay begins from the maximum short-circuit fault current in front of it and extends toward the lower fault currents. The proposed approach is tested on three different networks, namely the distribution portion of the IEEE 14-bus, the IEEE 8-bus, and the IEEE 39-bus test systems. The simulation results show that the proposed method can be easily implemented on any power network irrespective of the network size. The viability of the proposed scheme in terms of operating time, miscoordination cases, and flexibility is compared with the other standard and nonstandard characteristic curves available in the literature. The comparative study demonstrates a notable reduction in total relays’ operating time. The operating time difference between main and backup relays is also remarkably decreased. Since the number of line segments of the PWLC characteristic and their relevant slope and time delay can be defined arbitrarily, more flexible and desirable approach for the overcurrent protection coordination problem is achieved compared to other NSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Salazar, C.A.C.; Enriquez, A.C.; Schaeffer, S.E.: Directional overcurrent relay coordination considering non-standardized time curves. Int. J. Electr. Power Syst. Res. 122, 42–49 (2015). https://doi.org/10.1016/j.epsr.2014.12.018

    Article  Google Scholar 

  2. Rajput, V.N.; Pandya, K.S.: Coordination of directional overcurrent relays in the interconnected power systems using effective tuning of harmony search algorithm. Sustain. Comput. Inform. Syst. 15, 1–15 (2017). https://doi.org/10.1016/j.suscom.2017.05.002

    Article  Google Scholar 

  3. Sutherland, P.: Protective device coordination in an industrial power system with multiple sources. IEEE Trans. Ind. Appl. 33, 1096–1103 (1997). https://doi.org/10.1109/28.605753

    Article  Google Scholar 

  4. Farzinfar, M.; Jazaeri, M.; Razavi, F.: A new approach for optimal coordination of distance and directional over-current relays using multiple embedded crossover PSO. Int. J. Electr. Power Energy Syst. 61, 620–628 (2014)

    Article  Google Scholar 

  5. Chelliah, T.R.; Thangaraj, R.; Allamsetty, S.; Pant, M.: Coordination of directional overcurrent relays using opposition based chaotic differential evolution algorithm. Int. J. Electr. Power Energy Syst. 55, 341–350 (2014). https://doi.org/10.1016/j.ijepes.2013.09.032

    Article  Google Scholar 

  6. Manohar, S.; Panigrahi, B.K.; Abhyankar, A.R.: Optimal coordination of directional over-current relays using Teaching Learning-Based Optimization (TLBO) algorithm. Int. J. Electr. Power Energy Syst. 50, 33–41 (2013). https://doi.org/10.1016/j.ijepes.2013.02.011

    Article  Google Scholar 

  7. Rajput, V.N.; Adelnia, F.; Pandya, K.S.: Optimal coordination of directional overcurrent relays using improved mathematical formulation. IET Gener. Transm. Distrib. 12, 2086–2094 (2018). https://doi.org/10.1049/iet-gtd.2017.0945

    Article  Google Scholar 

  8. Tjahjono, A.; Anggriawan, D.O.; Faizin, A.K.; Priyadi, A.; Pujiantara, M.; Taufik, T.; Purnomo, M.H.: Adaptive modified firefly algorithm for optimal coordination of overcurrent relays. IET Gener. Transm. Distrib. 11, 2575–2585 (2017). https://doi.org/10.1049/iet-gtd.2016.1563

    Article  Google Scholar 

  9. Shih, M.Y.; Salazar, C.A.C.; Enriquez, A.C.: Adaptive directional overcurrent relay coordination using ant colony optimization. IET Gener. Transm. Distrib. 9, 2040–2049 (2015). https://doi.org/10.1049/iet-gtd.2015.0394

    Article  Google Scholar 

  10. Moravej, Z.; Adelnia, F.; Abbasi, F.: Optimal coordination of directional overcurrent relays using NSGA-II. Int. J. Electr. Power Syst. Res. 119, 228–236 (2014). https://doi.org/10.1016/j.epsr.2014.09.010

    Article  Google Scholar 

  11. Bouchekara, H.R.E.H.; Zellagui, M.; Abido, M.A.: Optimal coordination of directional overcurrent relays using a modified electromagnetic field optimization algorithm. Appl. Soft Comput. 54, 267–283 (2017). https://doi.org/10.1016/j.asoc.2017.01.037

    Article  Google Scholar 

  12. Albasri, F.A.; Alroomi, A.R.; Talaq, J.H.: Optimal coordination of directional overcurrent relays using biogeography-based optimization algorithms. IEEE Trans. Power Deliv. 30, 1810–1820 (2015). https://doi.org/10.1109/TPWRD.2015.2406114

    Article  Google Scholar 

  13. Gupta, S.; Deep, K.: Optimal coordination of overcurrent relays using improved leadership-based grey wolf optimizer. Arab. J. Sci. Eng. 45, 2081–2091 (2020)

    Article  Google Scholar 

  14. Ahmadi, S.A.; Karami, H.; Sanjari, M.J.; Tarimoradi, H.; Gharehpetian, G.B.: Application of hyper-spherical search algorithm for optimal coordination of overcurrent relays considering different relay characteristics. Int. J. Electr. Power Energy Syst. 83, 443–449 (2016). https://doi.org/10.1016/j.ijepes.2016.04.042

    Article  Google Scholar 

  15. Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N.: Optimal coordination of over-current relays in microgrids considering multiple characteristic curves. Alex. Eng. J. 60(2), 2093–2113 (2021). https://doi.org/10.1016/j.aej.2020.12.012

    Article  Google Scholar 

  16. Behkam, R.; Vahidi ,B.; Zolfaghari, M.; Salay Naderi, M.; Gharehpetian, G.B.: HBBO-based intelligent setting and coordination of directional overcurrent relays considering different characteristics. In: Iranian Conference on Electrical Engineering (ICEE) (2020). https://doi.org/10.1109/ICEE50131.2020.9260901

  17. Alam, M.; Sallem, A.; Masmoudi, N.: Protection coordination using mixed characteristics of directional overcurrent relays in interconnected power distribution networks. In: 6th IEEE International Energy Conference (2020). https://doi.org/10.1109/ENERGYCon48941.2020.9236488

  18. SIEMENS, SIPROTEC 4 Overcurrent Protection 7SJ61/7SJ66, Edition No. 8. https://siemens.com/siprotec (2017). Accessed 15 Sept 2017

  19. Keil, T.; Jager, J.: Advanced coordination method for overcurrent protection relays using nonstandard tripping characteristics. IEEE Trans. Power Deliv. 23, 52–57 (2008). https://doi.org/10.1109/TPWRD.2007.905337

    Article  Google Scholar 

  20. Saleh, K.A.; Zeineldin, H.; Al-Hinai, A.; El-Saadany, E.F.: Optimal coordination of directional overcurrent relays using a new time-current-voltage characteristic. IEEE Trans. Power Deliv. 30, 537–544 (2015). https://doi.org/10.1109/TPWRD.2014.2341666

    Article  Google Scholar 

  21. Darabi, A.; Bagheri, M.; Gharehpetian, G.B.: Highly sensitive microgrid protection using overcurrent relays with a novel relay characteristic. IET Renew. Power Gener. 14(7), 1201–1209 (2020). https://doi.org/10.1049/iet-rpg.2019.0793

    Article  Google Scholar 

  22. Jamali, S.; Borhani-Bahabadi, H.: Non-communication protection method for meshed and radial distribution networks with synchronous-based DG. Int. J. Electr. Power Energy Syst. 39, 467–478 (2017). https://doi.org/10.1016/j.ijepes.2017.06.019

    Article  Google Scholar 

  23. Hong, L.; Rizwan, M.; Wasif, M.; Ahmad, S.; Zaindin, M.: User-defined dual setting directional overcurrent relays with hybrid time current-voltage characteristics-based protection coordination for active distribution network. IEEE Access. 9, 62752–62769 (2021). https://doi.org/10.1109/ACCESS.2021.3074426

    Article  Google Scholar 

  24. Dadfar, S.; Gandomkar, M.: Augmenting protection coordination index in interconnected distribution electrical grids: optimal dual characteristic using numerical relays. Int. J. Electr. Power Syst Res. 131, 107107 (2021). https://doi.org/10.1016/j.ijepes.2021.107107

    Article  Google Scholar 

  25. Chakraborty, S.; Sarasij, D.: Communication-less protection scheme for AC microgrids using hybrid tripping characteristic. Electr. Power Syst. Res 187, 106453 (2020). https://doi.org/10.1016/j.epsr.2020.106453

    Article  Google Scholar 

  26. Sharaf, H.M.; Zeineldin, H.; Ibrahim, D.K.; Essam, E.: A proposed coordination strategy for meshed distribution systems with DG considering user-defined characteristics of directional inverse time overcurrent relays. Int. J. Electr. Power Energy Syst. 65, 49–58 (2015). https://doi.org/10.1016/j.ijepes.2014.09.028

    Article  Google Scholar 

  27. Chawla, A.; Bhalja, B.R.; Panigrahi, B.K.; Singh, M.: Gravitational search-based algorithm for optimal coordination of directional overcurrent relays using user defined characteristic. Int. J. Electr. Power Compon. Syst. 46, 43–55 (2018). https://doi.org/10.1080/15325008.2018.1431982

    Article  Google Scholar 

  28. Singh, M.; Telukunta, V.; Srivani, S.: Enhanced real time coordination of distance and user defined over current relays. Int. J. Electr. Power Energy Syst. 98, 430–441 (2018). https://doi.org/10.1016/j.ijepes.2017.12.018

    Article  Google Scholar 

  29. Yazdaninejadi, A.; Golshannavaz, S.; Nazarpour, D.; Teimourzadeh, S.; Aminifar, F.: Dual-setting directional overcurrent relays for protecting automated distribution networks. IEEE Trans. Ind. Inf. 15, 730–740 (2019). https://doi.org/10.1109/TII.2018.2821175

    Article  Google Scholar 

  30. Shabani, M.; Karimi, A.: A robust approach for coordination of directional overcurrent relays in active radial and meshed distribution networks considering uncertainties. Int. Trans. Electr. Energy Syst. 28, 1–15 (2018). https://doi.org/10.1002/etep.2532

    Article  Google Scholar 

  31. Yazdaninejadi, A.; Jannati, J.; Farsadi, M.: A new formulation for coordination of directional overcurrent relays in interconnected networks for better miscoordination suppression. Trans. Electr. Electr. Mater. 18, 169–175 (2017). https://doi.org/10.4313/TEEM.2017.18.3.169

    Article  Google Scholar 

  32. Aghdam, T.S.; Karegar, H.K.: Relay curve selection approach for microgrid optimal protection. Int. J. Renew. Energy Res. 7, 636–642 (2017)

    Google Scholar 

  33. IEEE Std C37.112-1996: IEEE standard inverse-time characteristic equations for overcurrent relays (2007).

  34. Yazdaninejadi, A.; Naderi, M.S.; Gharehpetian, G.B.; Talavat, V.: Protection coordination of directional overcurrent relays: New time current characteristic and objective function. IET Gener. Transm. Distrib. 12, 190–199 (2018). https://doi.org/10.1049/iet-gtd.2017.0574

    Article  Google Scholar 

  35. Yazdaninejadi, A.; Nazarpour, D.; Golshannavaz, S.: Sustainable electrification in critical infrastructure: Variable characteristics for overcurrent protection considering DG stability. Sustain. Cities Soc. 54, 102022 (2020). https://doi.org/10.1016/j.scs.2020.102022

    Article  Google Scholar 

  36. Ojaghi, M.; Ghahremani, R.: Piece-wise linear characteristic for coordinating numerical overcurrent relays. IEEE Trans. Power Deliv. 32, 145–151 (2017). https://doi.org/10.1109/TPWRD.2016.2578324

    Article  Google Scholar 

  37. Razavi, F.; Abyaneh, H.A.; Al-Dabbagh, M.; Mohammadi, R.; Torkaman, H.: A new comprehensive genetic algorithm method for optimal overcurrent relays coordination. Electr. Power Syst. Res. 78, 713–720 (2008). https://doi.org/10.1016/j.epsr.2007.05.013

    Article  Google Scholar 

  38. Ojaghi, M.; Sudi, Z.; Azari, M.: Local online adaptive technique for optimal coordination of overcurrent relays within high voltage substations. Int. Trans. Electr. Energy Syst. 26, 1810–1828 (2016). https://doi.org/10.1016/j.epsr.2007.05.013

    Article  Google Scholar 

  39. Pai, M.A.: Energy Function Analysis for Power System Stability. Kluwer Academic, Berlin (1989)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Mazlumi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azari, M., Mazlumi, K. & Ojaghi, M. Optimal Directional Overcurrent Relay Coordination in Interconnected Networks Considering User-Defined PWL Characteristic Curve. Arab J Sci Eng 47, 3119–3139 (2022). https://doi.org/10.1007/s13369-021-06048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06048-x

Keywords

Navigation