Skip to main content

Advertisement

Log in

Effective PV Parameter Estimation Algorithm Based on Marine Predators Optimizer Considering Normal and Low Radiation Operating Conditions

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper proposes the Marine Predators Algorithm (MPA) as a new bio-inspired optimization algorithm to extract the parameters of three-photo voltaic models of solar cells. These models are three diode model (TDM), double diode model (DDM) and one-diode model (SDM). The MPA is dependent on the manner of a population of Marine Predators. This optimal strategy allows prey to use an optimal foraging strategy and allows predators to use an intelligent rate policy for encounters. The proposed MPA-based parameter estimation algorithm is tested at normal and low radiation operating conditions. The normal operating condition is employed with the 57 mm diameter commercial silicon solar cell (Case 1), while the Case 2 is based on a multi-crystalline silicon solar cell of area 7.7 cm2 from Q6-1380 under low irradiance levels. The capability of MPA is validated for the three models compared with other competitive algorithms. Simulation results show that high closeness between the estimated and experimental records reflects the high capability of the MPA with more accurate parameters. The RMSE of 8.43854E−4, 7.59E−4 and 7.561E−4 are achieved for Case 1 by using SDM, DDM and TDM, respectively. While, the RMSE has the best levels of 1.61E−5, 1.46E−5, and 1.42E−5 in Case 2, respectively. Also, the MPA has competitive results compared with several optimization algorithms in the literature as sine cosine, particle swarm, salp swarm, grey wolf optimization algorithms. The proposed MPA has good convergence and robust statistical analysis for different operating conditions of low and high irradiance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ishaque, K.; Salam, Z.; Mekhilef, S.; Shamsudin, A.: Parameter extraction of solar photovoltaic modules using penalty-based differential evolution. Appl. Energy 99, 297–308 (2012)

    Article  Google Scholar 

  2. Bonanno, F.; Capizzi, G.; Graditi, G.; Napoli, C.; Tina, G.M.: A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module. Appl. Energy. 97, 956–961 (2012)

    Article  Google Scholar 

  3. Sandrolini, L.; Artioli, M.; Reggiani, U.: Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis. Appl. Energy. 87, 442–451 (2010)

    Article  Google Scholar 

  4. Amrouche, B.; Guessoum, A.; Belhamel, M.: A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison. Appl. Energy. 91, 395–404 (2012)

    Article  Google Scholar 

  5. Orioli, A.; Di Gangi, A.: A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data. Appl. Energy 102, 1160–1177 (2013)

    Article  Google Scholar 

  6. Chenouard, R.; El-Sehiemy, R.A.: An interval branch and bound global optimization algorithm for parameter estimation of three photovoltaic models. Energy Convers. Manag. (2020). https://doi.org/10.1016/j.enconman.2019.112400

    Article  Google Scholar 

  7. Abido, M.A.; Khalid, M.S.; Worku, M.Y.: An efficient ANFIS-based PI controller for maximum power point tracking of PV systems. Arab. J. Sci. Eng. 40, 2641–2651 (2015). https://doi.org/10.1007/s13369-015-1749-z

    Article  Google Scholar 

  8. Dash, S.K.; Ray, P.K.: Design and modeling of single-phase PV-UPQC scheme for power quality improvement utilizing a novel notch filter-based control algorithm: an experimental approach. Arab. J. Sci. Eng. 43, 3083–3102 (2018). https://doi.org/10.1007/s13369-018-3116-3

    Article  Google Scholar 

  9. Zaky, A.A.; Ibrahim, M.N.; Rezk, H.; Christopoulos, E.; El Sehiemy, R.A.; Hristoforou, E.; Kladas, A.; Sergeant, P.; Falaras, P.: Energy efficiency improvement of water pumping system using synchronous reluctance motor fed by perovskite solar cells. Int. J. Energy Res. 44, 11629–11642 (2020). https://doi.org/10.1002/er.5788

    Article  Google Scholar 

  10. El-Ela, A.A.A.; El-Sehiemy, R.A.; Kinawy, A.M.; Ali, E.S.: Optimal placement and sizing of distributed generation units using different cat swarm optimization algorithms. In: 2016 18th International Middle-East Power Systems Conference, MEPCON 2016—Proceedings (2017)

  11. Abou El-Ela, A.A.; El-Sehiemy, R.A.; Ali, E.S.; Kinawy, A.M.: Minimisation of voltage fluctuation resulted from renewable energy sources uncertainty in distribution systems. IET Gener. Transm. Distrib. (2019). https://doi.org/10.1049/iet-gtd.2018.5136

    Article  Google Scholar 

  12. Nishioka, K.; Sakitani, N.; Uraoka, Y.; Fuyuki, T.: Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration. Sol. energy Mater. Sol. cells. 91, 1222–1227 (2007)

    Article  Google Scholar 

  13. Kassis, A.; Saad, M.: Analysis of multi-crystalline silicon solar cells at low illumination levels using a modified two-diode model. Sol. Energy Mater. Sol. Cells. (2010). https://doi.org/10.1016/j.solmat.2010.06.036

    Article  Google Scholar 

  14. Chan, D.S.H.; Phang, J.C.H.: Analytical methods for the extraction of solar-cell single-and double-diode model parameters from IV characteristics. IEEE Trans. Electron Devices. 34, 286–293 (1987)

    Article  Google Scholar 

  15. Ishaque, K.; Salam, Z.; Taheri, H.: others: Modeling and simulation of photovoltaic (PV) system during partial shading based on a two-diode model. Simul. Model. Pract. Theory. 19, 1613–1626 (2011)

    Article  Google Scholar 

  16. Elbaset, A.A.; Ali, H.; Abd-El Sattar, M.: Novel seven-parameter model for photovoltaic modules. Sol. Energy Mater. Sol. Cells 130, 442–455 (2014)

    Article  Google Scholar 

  17. Bayoumi, A.S.; El-Sehiemy, R.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F.: Assessment of an improved three-diode against modified two-diode patterns of MCS solar cells associated with soft parameter estimation paradigms. Appl. Sci. (2021). https://doi.org/10.3390/app11031055

    Article  Google Scholar 

  18. Jadidbonab, M.; Mohammadi-Ivatloo, B.; Marzband, M.; Siano, P.: Short-term self-scheduling of virtual energy hub plant within thermal energy market. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2020.2978707

    Article  Google Scholar 

  19. Gholinejad, H.R.; Loni, A.; Adabi, J.; Marzband, M.: A hierarchical energy management system for multiple home energy hubs in neighborhood grids. J. Build. Eng. (2020). https://doi.org/10.1016/j.jobe.2019.101028

    Article  Google Scholar 

  20. Nazari-Heris, M.; Mirzaei, M.A.; Mohammadi-Ivatloo, B.; Marzband, M.; Asadi, S.: Economic-environmental effect of power to gas technology in coupled electricity and gas systems with price-responsive shiftable loads. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2019.118769

    Article  Google Scholar 

  21. Pazouki, S.; Haghifam, M.R.; Moser, A.: Uncertainty modeling in optimal operation of energy hub in presence of wind, storage and demand response. Int. J. Electr. Power Energy Syst. (2014). https://doi.org/10.1016/j.ijepes.2014.03.038

    Article  Google Scholar 

  22. Vahid-Pakdel, M.J.; Nojavan, S.; Mohammadi-ivatloo, B.; Zare, K.: Stochastic optimization of energy hub operation with consideration of thermal energy market and demand response. Energy Convers. Manag. (2017). https://doi.org/10.1016/j.enconman.2017.04.074

    Article  Google Scholar 

  23. Abou El-Ela, A.A.; El-Sehiemy, R.A.; Shaheen, A.M. et al: Enhanced coyote optimizer-based cascaded load frequency controllers in multi-area power systems with renewable. Neural Comput Applic. 33, 8459–8477 (2021). https://doi.org/10.1007/s00521-020-05599-8

    Article  Google Scholar 

  24. Zaky, A.A.; Ibrahim, M.N.; Rezk, H.; Christopoulos, E.; El Sehiemy, R.A.; Hristoforou, E.; Kladas, A.; Sergeant, P.; Falaras, P.: Energy efficiency improvement of water pumping system using synchronous reluctance motor fed by perovskite solar cells. Int. J. Energy Res. (2020). https://doi.org/10.1002/er.5788

    Article  Google Scholar 

  25. Chan, D.S.H.; Phillips, J.R.; Phang, J.C.H.: A comparative study of extraction methods for solar cell model parameters. Solid. State. Electron. 29, 329–337 (1986)

    Article  Google Scholar 

  26. Jain, A.; Kapoor, A.: Exact analytical solutions of the parameters of real solar cells using Lambert W-function. Sol. Energy Mater. Sol. Cells. 81, 269–277 (2004)

    Article  Google Scholar 

  27. Saleem, H.; Karmalkar, S.: An analytical method to extract the physical parameters of a solar cell from four points on the illuminated JV curve. IEEE Electron Device Lett. 30, 349–352 (2009)

    Article  Google Scholar 

  28. Agroui, K.; Pellegrino, M.; Giovanni, F.: Analysis techniques for photovoltaic modules based on amorphous solar cells. Arab. J. Sci. Eng. 42, 375–381 (2017). https://doi.org/10.1007/s13369-016-2050-5

    Article  Google Scholar 

  29. AlRashidi, M.R.; AlHajri, M.F.; El-Naggar, K.M.; Al-Othman, A.K.: A new estimation approach for determining the I–V characteristics of solar cells. Sol. Energy. 85, 1543–1550 (2011)

    Article  Google Scholar 

  30. El-Naggar, K.M.; AlRashidi, M.R.; AlHajri, M.F.; Al-Othman, A.K.: Simulated annealing algorithm for photovoltaic parameters identification. Sol. Energy. 86, 266–274 (2012)

    Article  Google Scholar 

  31. Jordehi, A.R.: Parameter estimation of solar photovoltaic (PV) cells: a review. Renew. Sustain. Energy Rev. 61, 354–371 (2016)

    Article  Google Scholar 

  32. Easwarakhanthan, T.; Bottin, J.; Bouhouch, I.; Boutrit, C.: Nonlinear minimization algorithm for determining the solar cell parameters with microcomputers. Int. J. Sol. Energy. 4, 1–12 (1986). https://doi.org/10.1080/01425918608909835

    Article  Google Scholar 

  33. Allam, D.; Yousri, D.A.; Eteiba, M.B.: Parameters extraction of the three diode model for the multi-crystalline solar cell/module using Moth-Flame Optimization Algorithm. Energy Convers. Manag. 123, 535–548 (2016)

    Article  Google Scholar 

  34. Awadallah, M.A.: Variations of the bacterial foraging algorithm for the extraction of PV module parameters from nameplate data. Energy Convers. Manag. 113, 312–320 (2016)

    Article  Google Scholar 

  35. Chen, X.; Yu, K.; Du, W.; Zhao, W.; Liu, G.: Parameters identification of solar cell models using generalized oppositional teaching learning based optimization. Energy (2016). https://doi.org/10.1016/j.energy.2016.01.052

    Article  Google Scholar 

  36. Muhsen, D.H.; Ghazali, A.B.; Khatib, T.; Abed, I.A.: Extraction of photovoltaic module model’s parameters using an improved hybrid differential evolution/electromagnetism-like algorithm. Sol. Energy. 119, 286–297 (2015)

    Article  Google Scholar 

  37. Muhsen, D.H.; Ghazali, A.B.; Khatib, T.; Abed, I.A.: Parameters extraction of double diode photovoltaic module’s model based on hybrid evolutionary algorithm. Energy Convers. Manag. 105, 552–561 (2015)

    Article  Google Scholar 

  38. Alam, D.F.; Yousri, D.A.; Eteiba, M.B.: Flower pollination algorithm based solar PV parameter estimation. Energy Convers. Manag. 101, 410–422 (2015)

    Article  Google Scholar 

  39. Yuan, X.; Xiang, Y.; He, Y.: Parameter extraction of solar cell models using mutative-scale parallel chaos optimization algorithm. Sol. Energy. 108, 238–251 (2014)

    Article  Google Scholar 

  40. Oliva, D.; Cuevas, E.; Pajares, G.: Parameter identification of solar cells using artificial bee colony optimization. Energy (2014). https://doi.org/10.1016/j.energy.2014.05.011

    Article  Google Scholar 

  41. Askarzadeh, A.; Rezazadeh, A.: Artificial bee swarm optimization algorithm for parameters identification of solar cell models. Appl. Energy. 102, 943–949 (2013)

    Article  Google Scholar 

  42. Askarzadeh, A.; Rezazadeh, A.: Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy. (2012). https://doi.org/10.1016/j.solener.2012.08.018

    Article  Google Scholar 

  43. Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.: Characterization of PV panel and global optimization of its model parameters using genetic algorithm. Energy Convers. Manag. 73, 10–25 (2013)

    Article  Google Scholar 

  44. Askarzadeh, A.; dos Santos Coelho, L.: Determination of photovoltaic modules parameters at different operating conditions using a novel bird mating optimizer approach. Energy Convers. Manag. 89, 608–614 (2015)

    Article  Google Scholar 

  45. Qais, M.H.; Hasanien, H.M.; Alghuwainem, S.; Nouh, A.S.: Coyote optimization algorithm for parameters extraction of three-diode photovoltaic models of photovoltaic modules. Energy (2019). https://doi.org/10.1016/j.energy.2019.116001

    Article  Google Scholar 

  46. Zaky, A.A.; Sehiemy, R.A.E.; Rashwan, Y.I.; Elhossieni, M.A.; Gkini, K.; Kladas, A.; Falaras, P.: Optimal performance emulation of PSCs using the elephant herd algorithm associated with experimental validation. ECS J. Solid State Sci. Technol. (2019). https://doi.org/10.1149/2.0271912jss

    Article  Google Scholar 

  47. Bayoumi, A.S.; El-sehiemy, R.A.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M.F.: Assessment of an Improved Three-Diode against Modified Two-Diode Patterns of MCS Solar Cells Associated with Soft Parameter Estimation Paradigms (2021)

  48. Chen, H.; Jiao, S.; Heidari, A.A.; Wang, M.; Chen, X.; Zhao, X.: An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models. Energy Convers. Manag. 195, 927–942 (2019)

    Article  Google Scholar 

  49. Abbassi, R.; Abbassi, A.; Asghar, A.; Mirjalili, S.: An efficient salp swarm-inspired algorithm for parameters identification of photovoltaic cell models. Energy Convers. Manag. 179, 362–372 (2019). https://doi.org/10.1016/j.enconman.2018.10.069

    Article  Google Scholar 

  50. Khanna, V.; Das, B.K.; Bisht, D.; Singh, P.K.: others: A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew. Energy. 78, 105–113 (2015)

    Article  Google Scholar 

  51. Robandi, I., et al.: Photovoltaic parameter estimation using grey wolf optimization. In: 2017 3rd International Conference on Control, Automation and Robotics (ICCAR), pp. 593–597 (2017)

  52. El-Sehiemy, R.A.; Shaheen, A.M.; Ginidi, A.; Ghoneim, S.S.M.: A forensic-based investigation algorithm for parameter extraction of solar cell models. IEEE Access. (2020). https://doi.org/10.1109/ACCESS.2020.3046536

    Article  Google Scholar 

  53. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H.: Marine predators algorithm: A nature-inspired metaheuristic. Expert Syst. Appl. 152, 113377 (2020)

    Article  Google Scholar 

  54. Wolf, M.; Noel, G.T.; Stirn, R.J.: Investigation of the double exponential in the current–voltage characteristics of silicon solar cells. IEEE Trans. Electron Devices. 24, 419–428 (1977)

    Article  Google Scholar 

  55. Joshi, D.P.; Sharma, K.: Effects of grain boundaries on the performance of polycrystalline silicon solar cells. Ind. J Pure Appl. Phys. 50(9), 661–669 (2012)

    Google Scholar 

  56. Fossum, J.G.; Lindholm, F.A.: Theory of grain-boundary and intragrain recombination currents in polysilicon pn-junction solar cells. IEEE Trans. Electron Devices. 27, 692–700 (1980)

    Article  Google Scholar 

  57. Koohi-Kamali, S.; Rahim, N.A.; Mokhlis, H.; Tyagi, V.V.: Photovoltaic electricity generator dynamic modeling methods for smart grid applications: a review. Renew. Sustain. Energy Rev. 57, 131–172 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Saeed Abdelrazek Bayoumi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayoumi, A.S.A., El-Sehiemy, R.A. & Abaza, A. Effective PV Parameter Estimation Algorithm Based on Marine Predators Optimizer Considering Normal and Low Radiation Operating Conditions. Arab J Sci Eng 47, 3089–3104 (2022). https://doi.org/10.1007/s13369-021-06045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06045-0

Keywords

Navigation