Skip to main content
Log in

Magnetohydrodynamics Natural Convection of a Triangular Cavity Involving Ag-MgO/Water Hybrid Nanofluid and Provided with Rotating Circular Barrier and a Quarter Circular Porous Medium at its Right-Angled Corner

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The current paper studied the behavior of a triangular cavity occupied with Ag-MgO/water nanofluid under MHD natural convection and provided with a rotating circular barrier, while the right-angled corner is equipped with quarter-circle porous medium and maintained at a fixed hot temperature Th. Several parameters are tested such as Rayleigh number (103 ≤ Ra ≤ 106), Hartmann number (0 ≤ Ha ≤ 80) and Darcy number (10−5 ≤ Da ≤ 0.15). The obtained results depict the enhancing effect of Ra and the controlling role of the magnetic parameter on heat transport. Increasing the characteristics of the porous media such as the porosity and the permeability showed a substantial impact on the heat transport efficiency within the enclosure. Moreover, the novelty findings in this paper are principally illustrated in the boosting impact of raising the porous medium thickness when it is associated with the growing up of the heated parts of the geometry by increasing the dimension of the radius (rp). Also, the rotational velocity (ω) and the radius (rob) of the circular obstacle are tested and showed an important influence on the energy transport within the cavity. Moreover, the obtained results by modifying the length (a) prove its pertinent influence on the heat transfer performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

k :

Thermal conductivity (W/m k)

L :

Dimension of the cavity (m)

r ob :

Radius of cylinder (m)

R p :

Radius of porous media (m)

a :

Length (m)

Ra:

Rayleigh number

Ha:

Hartmann number

Nu:

Nusselt number

Nuave :

Average Nusselt number

Nuloc :

Local Nusselt number

Pr:

Prandtl number

Da:

Darcy number

x, y :

Coordinate (m)

X, Y :

Dimensionless coordinate

u, v :

Velocity components (m/s)

U, V :

Non-dimensional velocity components

T :

Temperature (°C)

p :

Pressure (N/m2)

P :

Dimensionless pressure

K :

Permeability

g :

Gravitational acceleration vector (m/s2)

F c :

Forchheimer coefficient

B 0 :

Intensity of magnetic field

θ :

Dimensionless temperature

ε :

Porosity

α :

Thermal diffusivity (m2/s)

ν :

Kinematic viscosity (m2/s)

ϕ :

Volume fraction

β :

Thermal expansion coefficient (1/K)

μ :

Dynamic viscosity (kg/m s)

ρ :

Density (kg/m3)

σ :

Electrical conductivity (Ω m)−1

Ψ :

Non-dimensional stream function

bf :

Base fluid

hnf :

Hybrid nanofluid

np :

Nanoparticles

ave:

Average

loc:

Local

h :

Hot

c :

Cold

References

  1. Tahmasbi, M.; Siavashi, M.: Mixed convection enhancement by using optimized porous media and nanofluid in a cavity with two rotating cylinders. J. Therm. Anal. Calorim. 141, 1829–1846 (2020)

    Article  Google Scholar 

  2. Li, Z.; Hussein, A.K.; Younis, O.; Rostami, S.; He, W.: Effect of alumina nano-powder on the natural convection of water under the influence of a magnetic field in a cavity and optimization using RMS: Using empirical correlations for the thermal conductivity and a sensitivity analysis. Int. Commun. Heat Mass Transf. 112, 104497 (2020)

    Article  Google Scholar 

  3. Fares, R.; Naim, H.; Abderrahmane, A.; Bouadi, A.: Mixed convection of nanofluid flow in a vented cavity under the influence of magnetic field. J. Mater. Struct 4, 1–11 (2020)

    Google Scholar 

  4. Shafee, A.; Muhammad, T.; Alsakran, R.; Tlili, S.; Bazadeh, H.; Khan, U.: Numerical examination for nanomaterial forced convection within a permeable cavity involving magnetic forces. Physica A. 550, 123962 (2020)

    Article  Google Scholar 

  5. Rostami, S.; Aghakhani, S.: Review on the control parameters of natural convection in different shaped cavities with and without nanofluid. Processes 8, 1011 (2020)

    Article  Google Scholar 

  6. Mebarek-Oudina, F.; Redouane, F.; Rajashekhar, K.: “Convection heat transfer of MgO-Ag/water magneto-hybrid nanoliquid flow into a special porous enclosure. Alger. J. Renew. Energy Sustain. Dev. 2, 84–95 (2020)

    Google Scholar 

  7. Hartmann, J.; Lazarus, F.: Theory of the laminar flow of an electrically con-ductive liquid in a homogeneous magnetic field. Mathematisk Fysiske Meddelelser 15(6), 1–28 (1937)

    Google Scholar 

  8. Choi, S.U.S.; Eastman, J.A.: Enhancing thermal conductivity of fluids withnanoparticles. ASME Fluids Eng. Div. 231, 99–103 (1995)

    Google Scholar 

  9. Dogonchi, A.S.; Tayebi, T.; Chamkha, A.J.; Ganji, D.D.: Natural convection analysis in a square enclosure with a wavy circular heater under magnetic field and nanoparticles. J. Therm. Anal. Calorim. 139, 661–671 (2020)

    Article  Google Scholar 

  10. Erdem, M.; Varol, Y.: Numerical investigation of heat transfer and flow characteristics of MHD nano-fluid forced convection in a pipe. J. Therm. Anal. Calorim. 139, 3897–3909 (2020)

    Article  Google Scholar 

  11. Selimefendigil, F.; Öztop, H.F.: Combined effects of double rotating cones and magnetic field on the mixed convection of nanofluid in a porous 3D U-bend. Int. Commun. Heat Mass Transf. 116, 104703 (2020)

    Article  Google Scholar 

  12. Sheikholeslami, M.; Keramati, H.; Shafee, A.; Li, Z.; Alawad, O.A.; Tlili, I.: Nanofluid MHD forced convection heat transfer around the elliptic obstacle inside a permeable lid drive 3D enclosure considering lattice Boltzmann method. Phys. A 523, 87–104 (2019)

    Article  MathSciNet  Google Scholar 

  13. Zhang, R.; Aghakhani, S.; Pordanjani, A.H.; Vahedi, S.M.; Shahsavar, A.; Afrand, M.: Investigation of the entropy generation during natural convection of Newtonian and non-Newtonian fluids inside the L-shaped cavity subjected to magnetic field: application of lattice Boltzmann method. Eur. Phys. J. Plus 135, 184 (2020)

    Article  Google Scholar 

  14. Sadeghi, M.S.; Anadalibkhah, N.; Ghasemiasl, R.; Armaghani, T.; Dogonchi, A.S.; Chamkha, A.J.; Hafiz, A.; Asadi, A.: On the natural convection of nanofluids in diverse shapes of enclosures: an exhaustive review. J. Thermal Anal. Calorim. 18, 1–22 (2020)

    Google Scholar 

  15. Ghalambaz, M.; Doostani, A.; Izadpanahi, E.; Chamkha, A.J.: Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. J. Therm. Anal. Calorim. 139, 2321–2336 (2020)

    Article  Google Scholar 

  16. Sheikholeslami, M.; Sheremet, M.A.; Shafee, A.; Tlili, I.: Simulation of nanoliquids thermogravitational convection within a porous chamber imposing magnetic and radiation impacts. Physica A. 550, 124058 (2020)

    Article  Google Scholar 

  17. Fares, R.; Aissa, A.; Meddeber, M.A.; Aid, A.: Numerical investigation of hydrodynamic nanofluid convective flow in a porous enclosure. Revue Nature et Technologie 10, 54–57 (2018)

    Google Scholar 

  18. Ghalambaz, M.; Mehryan, S.A.M.; Zahmatkesh, I.; Chamkha, A.: Free convection heat transfer analysis of a suspension of nano–encapsulated phase change materials (NEPCMs) in an inclined porous cavity. Int. J. Thermal Sci. 157, 106503 (2020)

    Article  Google Scholar 

  19. Mehryan, S.A.M.; Ayoubi-Ayoubloo, K.; Shahabadi, M.; Ghalambaz, M.; Talebizadehsardari, P.; Chamkha, A.: Conjugate phase change heat transfer in an inclined compound cavity partially filled with a porous medium: a deformed mesh approach. Transp. Porous Media 132, 657–681 (2020)

    Article  MathSciNet  Google Scholar 

  20. Mebarek-Oudina, F.; Fares, R.; Aissa, A.; Lewis, R.W.; Abu-Hamdeh, N.H.: Entropy and convection effect on magnetized hybrid nano-liquid flow inside a trapezoidal cavity with zigzagged wall. Int. Commun. Heat Mass Transf. 125, 105279 (2021)

    Article  Google Scholar 

  21. Mahammed, A.B.; Fares, R.; Lounis, M.: Magnetohydrodynamics forced convection of a nanofluid-filled triangular vented cavity provided with a quarter circular porous medium at its right-angled corner. Collectors 1, 5 (2020)

    Google Scholar 

  22. Krishna, M.V.; Chamkha, A.J.: Hall and ion slip effects on MHD rotating flow of elastico-viscous fluid through porous medium. Int. Commun. Heat Mass Transf. 113, 104494 (2020)

    Article  Google Scholar 

  23. Fares, R.; Mebarek-Oudina, F.; Aissa, A.; Bilal, S.M.; Öztop, H.F.: Optimal entropy generation in Darcy-Forchheimer magnetized flow in a square enclosure filled with silver based water nanoliquids. J. Thermal Anal. Calorim. 17, 1–11 (2021)

    Google Scholar 

  24. Hashemi-Tilehnoee, M.; Dogonchi, A.S.; Seyyedi, S.M.; Chamkha, A.J.; Ganji, D.D.: Magnetohydrodynamic natural convection and entropy generation analyses inside a nanofluid-filled incinerator-shaped porous cavity with wavy heater block. J. Therm. Anal. Calorim. 141, 2033–2045 (2020)

    Article  Google Scholar 

  25. Biswas, N.; Manna, N.K.; Chamkha, A.J.: Effects of half-sinusoidal non-uniform heating during MHD thermal convection in Cu–Al2O3/water hybrid nanofluid saturated with porous media. J. Therm. Anal. Calorim. 143, 1665–1688 (2021)

    Article  Google Scholar 

  26. Alsabery, A.I.; Armaghani, T.; Chamkha, A.J.; Hashim, I.: Two-phase nanofluid model and magnetic field effects on mixed convection in a lid-driven cavity containing heated triangular wall. Alex. Eng. J. 59, 129–148 (2020)

    Article  Google Scholar 

  27. Abu-Libdeh, N.; Redouane, F.; Aissa, A.; Mebarek-Oudina, F.; Almuhtady, A.; Jamshed, W.; Al-Kouz, W.: Hydrothermal and entropy investigation of Ag/MgO/H2O hybrid nanofluid natural convection in a novel shape of porous cavity. Appl. Sci. 11, 1722 (2021)

    Article  Google Scholar 

  28. Aminian, E.; Moghadasi, H.; Saffari, H.: Magnetic field effects on forced convection flow of a hybrid nanofluid in a cylinder filled with porous media: a numerical study. J. Therm. Anal. Calorim. 141, 2019–2031 (2020)

    Article  Google Scholar 

  29. Fabregatand, A.; Pallarès, J.: Heat transfer and boundary layer analyses of laminar and turbulent natural convection in a cubical cavity with differently heated opposed walls. Int. J. Heat Mass Transf. 151, 119409 (2020)

    Article  Google Scholar 

  30. Liu, X.; Toghraie, D.; Hekmatifar, M.; Akbari, O.A.; Karimipour, A.; Afrand, M.: Numerical investigation of nanofluid laminar forced convection heat transfer between two horizontal concentric cylinders in the presence of porous medium. J. Therm. Anal. Calorim. 141, 2095–2108 (2020)

    Article  Google Scholar 

  31. Izadi, M.; Sheremet, M.A.; Mehryan, S.A.M.; Pop, I.; Oztop, H.F.; Abu-Hamdeh, N.: MHD thermogravitational convection and thermal radiation of a micropolar nanoliquid in a porous chamber. Int. Commun. Heat Mass Transf. 110, 104409 (2020)

    Article  Google Scholar 

  32. Gorla, R.S.R.; Siddiqa, S.: MHD mixed convection in copper-water nanofluid filledlid-driven square cavity containing multiple adiabaticobstacles with discrete heating. Int. J. Appl. Mech. Eng. 25, 57–74 (2020)

    Article  Google Scholar 

  33. Barnoon, P.; Toghraie, D.: Application of rotating circular obstacles in improving ferrofluid heat transfer in an enclosure saturated with porous medium subjected to a magnetic field. J. Therm. Anal. Calorim. 11, 9356 (2020)

    Google Scholar 

  34. Selimefendigil, F.; Öztop, H.F.: Impact of a rotating cone on forced convection of Ag–MgO/water hybrid nanofluid in a 3D multiple vented T-shaped cavity considering magnetic field effects. J. Therm. Anal. Calorim. 6, 1–17 (2020)

    Google Scholar 

  35. Selimefendigil, F.; Öztop, H.F.: “Control of natural convection in a CNT-water nanofluid filled 3D cavity by using an inner T-shaped obstacle and thermoelectric cooler. Int. J. Mech. Sci. 169, 105104 (2020)

    Article  Google Scholar 

  36. Abdelmalek, Z.; Tayebi, T.; Dogonchi, A.S.; Chamkha, A.J.; Ganji, D.D.; Tlili, I.: Role of various configurations of a wavy circular heater on convective heattransfer within an enclosure filled with nanofluid. Int. Commun. Heat Mass Transf. 113, 104525 (2020)

    Article  Google Scholar 

  37. Radouane, F.; Abderrahmane, A.; Mebarek-Oudina, F.; Ahmed, W.; Rashad, A.M.; Sahnoun, M.; Ali, H.M.: Magneto-free convectiveof hybrid nanofluid inside non-darcy porous enclosure containing an adiabatic rotating cylinder. Energy Sources Part A Recov. Util. Environ. Effects 13, 1–16 (2020)

    Google Scholar 

  38. Selimefendigil, F.; Öztop, H.F.; Abu-Hamdeh, N.: Impacts of conductive inner L-shaped obstacle and elastic bottom wall on MHD forced convection of a nanofluid in vented cavity. J. Therm. Anal. Calorim. 141, 465–482 (2020)

    Article  Google Scholar 

  39. Soomro, F.A.; Ul Haq, R.; Algehyne, E.A.; Tlili, I.: Thermal performance due to magnetohydrodynamics mixed convection flow in a triangular cavity with circular obstacle. J. Energy Storage 31, 101702 (2020)

    Article  Google Scholar 

  40. Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Yang, Z.; Sheremet, M.A.: Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int. J. Heat Mass Transf. 130, 123–134 (2019)

    Article  Google Scholar 

  41. Moussa, M.M.: MHD free convection in a porous non-uniformly heated triangle cavity equipped with a circular obstacle subjected to various thermal configurations. Mod. Phys. Lett. B 34, 2050354 (2020)

    Article  MathSciNet  Google Scholar 

  42. Usman, M.; Khan, Z.H.; Liu, M.B.: MHD natural convection and thermal control inside a cavity with obstacles under the radiation effects. Physica A. 535, 122443 (2019)

    Article  MathSciNet  Google Scholar 

  43. Selimefendigil, F.; Öztop, H.F.: Forced convection in a branching channel with partly elastic walls and inner L-shaped conductive obstacle under the influence of magnetic field. Int. J. Heat Mass Transf. 144, 118598 (2019)

    Article  Google Scholar 

  44. Khan, L.A.; Raza, M.; Mir, N.A.; Ellahi, R.: Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J. Therm. Anal. Calorim. 140, 879–890 (2020)

    Article  Google Scholar 

  45. Dogonchi, A.S.; Hashemi-Tilehnoee, M.; Waqas, M.; Seyyedi, S.M.; Animasaun, I.L.; Ganji, D.D.: The influence of different shapes of nanoparticle on Cu–H2O nanofluids in a partially heated irregular wavy enclosure. Physica A. 540, 123034 (2020)

    Article  MathSciNet  Google Scholar 

  46. Abdelrazek, A.H.; Kazi, S.N.; Alawi, O.A.; Yusoff, N.; Oon, C.S.; Ali, H.M.: Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids. J. Therm. Anal. Calorim. 139, 1637–1653 (2020)

    Article  Google Scholar 

  47. Benkhedda, M.; Boufendi, T.; Tayebi, T.; Chamkha, A.J.: Convective heat transfer performance of hybrid nanofluid in a horizontal pipe considering nanoparticles shapes effect. J. Therm. Anal. Calorim. 140, 411–425 (2020)

    Article  Google Scholar 

  48. Vo, D.D.; Hedayat, M.; Ambreen, T.; Shehzad, S.A.; Sheikholeslami, M.; Shafee, A.; Nguyen, T.K.: Effectiveness of various shapes of Al2O3 nanoparticles on the MHD convective heat transportation in porous medium. J. Therm. Anal. Calorim. 139, 1345–1353 (2020)

    Article  Google Scholar 

  49. Ghasemi, K.; Siavashi, M.: Three-dimensional analysis of magnetohydrodynamic transverse mixed convection of nanofluid inside a lid-driven enclosure using MRT-LBM. Int. J. Mech. Sci. 165, 105199 (2020)

    Article  Google Scholar 

  50. Yan, S.-R.; Pordanjani, A.H.; Aghakhani, S.; Goldanlou, A.S.; Afrand, M.: Managment of natural convection of nanofluids inside a square enclosure by different nano powder shapes in presence of Fins with different shapes and magnetic field effect. Adv. Powder Technol. 31, 2759–2777 (2020)

    Article  Google Scholar 

  51. Hussien, A.A.; Al-Kouz, W.; El Hassan, M.; Janvekar, A.A.; Chamkha, A.J.: A review of flow and heat transfer in cavities and their applications. Eur. Phys. J. Plus 136(4), 1–45 (2021)

    Article  Google Scholar 

  52. Al-Kouz, W.; Khalid, B.S.; Ali, C.: Numerical investigation of rarefied gaseous flows in an oblique wavy sided walls square cavity. Int. Commun. Heat Mass Transf. 116, 104719 (2020)

    Article  Google Scholar 

  53. Rehman, K.U., et al.: Heat transfer individualities due to evenly heated T-Shaped blade rooted in trapezium enclosure: numerical analysis. Case Stud. Thermal Eng. 22, 100778 (2020)

    Article  Google Scholar 

  54. Zahri, M.; Al-Kouz, W.; Rehman, K.U.; Malik, M.Y.: Thermally magnetized rectangular chamber optimization (TMRCO) of partially heated continuous stream: Hybrid meshed case study. Case Stud. Thermal Eng. 22, 100770 (2020)

    Article  Google Scholar 

  55. Kousar, N.; Rehman, K.U.; Al-Kouz, W.; Al-Mdallal, Q.M.; Malik, M.Y.: Hybrid mesh finite element analysis (HMFEA) of uniformly heated cylinder in a partially heated moon shaped enclosure. Case Stud. Thermal Eng. 21, 100713 (2020)

    Article  Google Scholar 

  56. Hussien, A.A.; Al-Kouz, W.; Yusop, N.M.; Abdullah, M.Z.; Janvekar, A.A.: A Brief survey of preparation and heat transfer enhancement of hybrid nanofluids. Strojniski Vestnik 65, 119 (2019)

    Google Scholar 

  57. Islam, T.; Akter, N.; Jahan, N.: MHD free convective heat transfer in a triangular enclosure filled with Copper-water nanofluid. Int. J. Mat. Math. Sci. 2, 29–38 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fares Redouane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amine, B.M., Redouane, F., Mourad, L. et al. Magnetohydrodynamics Natural Convection of a Triangular Cavity Involving Ag-MgO/Water Hybrid Nanofluid and Provided with Rotating Circular Barrier and a Quarter Circular Porous Medium at its Right-Angled Corner. Arab J Sci Eng 46, 12573–12597 (2021). https://doi.org/10.1007/s13369-021-06015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06015-6

Keywords

Navigation