Skip to main content
Log in

Development of a New Cost Performance Index (CPI) for Selecting the Most Suitable Wire Electrode in Wire-EDM Machining

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Wire electrical discharge machining, commonly known as Wire-EDM (or WEDM), is a nonconventional process of machining complicated, precise parts of hard conductive materials without using costly grinding or forming tools. Efficient utilization of available wire electrodes for computer integrated-Wire-EDM is an important aspect of production economic, energy consumption, and material consumption of wire electrode and workpiece. In this research work, a new cost performance index (CPI) of the wire electrode for Wire-EDM was developed, considering the economical and ecological aspects. Using the newly developed CPI, identifying the most suitable wire electrode and cutting conditions, for achieving production economic and machining efficiency in Wire-EDM, can be attained. This is highly recommended to guide the operation planner to classify the various alternatives to identify the most feasible wire, not only to achieve higher machining performance, but also to consider the economical and ecological aspects as well as minimizing energy and natural resources consumption. This is socially beneficial and very essential in industrial practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kuriakose, S.; Mohan, K.; Shunmugam, M.S.: Data mining applied to Wire-EDM process. J. Mater. Process. Technol. 142(1), 182–189 (2003)

    Article  Google Scholar 

  2. El-Hofy, H.: Advanced machining processes. McGraw-Hill press, New York, USA (2005)

    Google Scholar 

  3. Ho, K.H.; Newman, S.T.; Rahimifard, S.; Allen, R.D.: State of the art in wire electrical discharge machining (WEDM). Int. J. Mach. Tools Manuf 44(12–13), 1247–1259 (2004)

    Article  Google Scholar 

  4. Maher, I.; Sarhan, A.A.D.; Hamdi, M.: Review of improvements in wire electrode properties for longer working time and utilization in wire EDM machining. Int. J. Adv. Manuf. Technol. 76, 329–351 (2015)

    Article  Google Scholar 

  5. Hou, P.; Guo, Y.; Shao, D.; Li, Z.; Wureli, Y.; Tang, L.: Influence of open-circuit voltage on high-speed wire electrical discharge machining of insulating Zirconia. Int. J. Adv. Manuf. Technol. 73, 229 (2014)

    Article  Google Scholar 

  6. Levy, G.N.; Wertheim, R.: EDM-machining of sintered carbide compacting dies. CIRP Ann. Manuf. Technol. 37, 175–178 (1988)

    Article  Google Scholar 

  7. Yu, P.H.; Lin, Y.X.; Lee, H.K.; Mai, C.C.; Yan, B.H.: Improvement of wire electrical discharge machining efficiency in machining polycrystalline silicon with auxiliary-pulse voltage supply. Int. J. Adv. Manuf. Technol. 57, 991 (2011)

    Article  Google Scholar 

  8. Hsieh, S.F.; Lin, M.H.; Chen, S.L.; Ou, S.F.; Huang, T.S.; Zhou, X.Q.: Surface modification and machining of TiNi/TiNb-based alloys by electrical discharge machining. Int. J. Adv. Manuf. Technol. 86, 1475 (2016)

    Article  Google Scholar 

  9. König, W.; Dauw, D.F.; Levy, G.; Panten, U.: EDM-future steps towards the machining of ceramics. CIRP Ann. Manuf. Technol. 37, 623–631 (1988)

    Article  Google Scholar 

  10. Vasilic, G.; Zivanovic, S.: Configuring and analysis of complex multi-axis reconfigurable machine for wire cutting process. Mechan. Mach. Theory 149, 103833 (2020)

    Article  Google Scholar 

  11. Antar, M.T.; Soo, S.L.; Aspinwall, D.K.; Jones, D.; Perez, R.: Productivity and workpiece surface integrity when wedm aerospace alloys using coated wires. Proc. Eng. 19, 3–8 (2011)

    Article  Google Scholar 

  12. Dodun, O.; Gonçalves-Coelho, A.M.; Slătineanu, L.; Nagit, L.: Using wire electrical discharge machining for improved corner cutting accuracy of thin parts. Int. J. Adv. Manuf. Technol. 41, 858 (2009)

    Article  Google Scholar 

  13. Scott, D.A.N.; Boyina, S.; Rajurkar, K.P.: Analysis and optimization of parameter combinations in wire electrical discharge machining. Int. J. Prod. Res. 29, 2189–2207 (1991)

    Article  MATH  Google Scholar 

  14. Kuriakose, S.; Shunmugam, M.S.: Multi-objective optimization of wire-electro discharge machining process by Non-Dominated Sorting Genetic Algorithm. J. Mater. Process. Technol. 170, 133–141 (2005)

    Article  Google Scholar 

  15. Wei, W.; Zhidong, L.; Wentai, S.; Yueqin, Z.; Zongjiun, T.: Surface burning of high-speed reciprocating wire electrical discharge machining under large cutting energy. Int. J. Adv. Manuf. Technol. 87, 2713 (2016)

    Article  Google Scholar 

  16. Maher, I., Ahmed, A.D.S., Marashi, H.: Effect of Electrical Discharge Energy on White Layer Thickness of WEDM Process. In: Reference Module in Materials Science and Materials Engineering. Volume 1. Comprehensive Materials Finishing, pp. 231–266, Elsevier publisher (2017)

  17. Vila, C.; Siller, H.R.; Rodriguez, C.A.; Bruscas, G.M.; Serrano, J.: Economical and technological study of surface grinding versus face milling in hardened AISI D3 steel machining operations. Int. J. Prod. Econ. 138(2), 273–283 (2012)

    Article  Google Scholar 

  18. Keskin, Y.; Halkacı, H.; Kizil, M.: An experimental study for determination of the effects of machining parameters on surface roughness in electrical discharge machining (EDM). Int. J. Adv. Manuf. Technol. 28, 1118 (2006)

    Article  Google Scholar 

  19. Klocke, F.; Welschof, L.; Herrig, T.; Klink, A.: Model-based productivity analysis of wire EDM for the manufacturing of titanium. Procedia CIRP. 77, 594–597 (2018)

    Article  Google Scholar 

  20. Calvo, R.; Daniel, M.: Wire electrical discharge machining (EDM) setup parameters influence in functional surface roughness. Procedia Manufacturing. 41, 602–609 (2019)

    Article  Google Scholar 

  21. Kapoor, J., Singh, S., Khamba, J.S.: Recent developments in wire electrodes for high performance WEDM. The Proceedings of the World Congress on Engineering, London, (2010)

  22. Kapoor, J.; Singh, S.; Khamba, J.S.: High-performance wire electrodes for wire electrical-discharge machining—a review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 226(11), 1757–1773 (2012)

    Article  Google Scholar 

  23. Kuroda, H.; Aoyama, S.; Kimura, T.; Sawahata, K.; Sato, T.: Development of high-performance coated wire electrodes for high-speed cutting and accurate machining. Hitachi Cable Rev. 22, 51–56 (2003)

    Google Scholar 

  24. Dauw, D.F.; Albert, L.: About the evolution of wire tool performance in Wire EDM. CIRP Ann. Manuf. Technol. 41(1), 221–225 (1992)

    Article  Google Scholar 

  25. Dekeyser, W.; Snoeys, R.; Jennes, M.: Expert system for wire cutting EDM, based on pulse classification and thermal modeling. Robot. Comput. Integr. Manuf. 4(1–2), 219–224 (1988)

    Article  Google Scholar 

  26. Maher, I.; Sarhan, A.A.D.: Proposing a new performance index to identify the effect of spark energy and pulse frequency simultaneously to achieve high machining performance in WEDM. Int. J. Adv. Manuf. Technol. 91, 433–443 (2016)

    Article  Google Scholar 

  27. Gong, Y.; Sun, Y.; Cheng, J.; Wang, C.; Liu, Y.; Zhu, Z.: Erratum to: Modeling and experimental study on breakdown voltage (BV) in low speed wire electrical discharge machining (LS-WEDM) of Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 90, 1293 (2017)

    Article  Google Scholar 

  28. Hewidy, M.; El-Taweel, T.; El-Safty, M.: Modelling the machining parameters of wire electrical discharge machining of Inconel 601 using RSM. J. Mater. Process. Technol. 169(2), 328–336 (2005)

    Article  Google Scholar 

  29. Izquierdo, B.; Sánchez, J.A.; Plaza, S.; Pombo, I.; Ortega, N.: A numerical model of the EDM process considering the effect of multiple discharges. Int. J. Mach. Tools Manuf. 49(3–4), 220–229 (2009)

    Article  Google Scholar 

  30. Gostimirovic, M.; Kovac, P.; Sekulic, M.; Skoric, B.: Influence of discharge energy on machining characteristics in EDM. J. Mech. Sci. Technol. 26(1), 173–179 (2012)

    Article  Google Scholar 

  31. Habib, S.; Okada, A.: Experimental investigation on wire vibration during fine wire electrical discharge machining process. Int. J. Adv. Manuf. Technol. 84, 2265 (2016)

    Article  Google Scholar 

  32. Garg, R.: Effect of process parameters on performance measures of wire electrical discharge machining. (Ph.D.), National Institute of Technology, Kurukshetra (2010)

  33. Jang, J.S.R.; Sun, C.T.; Mizutani, E.: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall Inc, U.S.A. (1997)

    Google Scholar 

  34. Jangra, K.; Grover, S.; Aggarwal, A.: Simultaneous optimization of material removal rate and surface roughness for WEDM of WC-Co composite using grey relational analysis along with Taguchi method. Int. J. Ind. Eng. Comput. 2(3), 479–490 (2011)

    Google Scholar 

  35. Lee, C.S.; Heo, E.Y.; Kim, J.M.; Choi, I.H.; Kim, D.W.: Electrode wear estimation model for EDM drilling. Robot. Comput. Integr. Manuf. 36, 70–75 (2015)

    Article  Google Scholar 

  36. Lin, C.T.; Chung, I.F.; Huang, S.Y.: Improvement of machining accuracy by fuzzy logic at corner parts for wire-EDM. Fuzzy Sets Syst. 122(3), 499–511 (2001)

    Article  MathSciNet  Google Scholar 

  37. Maher, I.; Ling, L.H.; Sarhan, A.A.D.; Hamdi, M.: Improve wire EDM performance at different machining parameters - ANFIS modeling. IFAC-Papers OnLine. 48(1), 105–110 (2015)

    Article  Google Scholar 

  38. Rebeka, K.; Peter, G.; Angela, C.; Peter, V.: Sustainable consumption and production—Research, experience, and development—The Europe we want. J. Clean. Prod. 138(2), 139–147 (2016)

    Google Scholar 

  39. Alayón, C.; Säfsten, K.; Johanssona, G.: Conceptual sustainable production principles in practice: Do they reflect what companies do? J. Clean. Prod. 141, 693–701 (2017)

    Article  Google Scholar 

  40. Lacasa, E.; Santolaya, J.L.; Biedermann, A.: Obtaining sustainable production from the product design analysis. J. Clean. Prod. 139, 706–716 (2016)

    Article  Google Scholar 

  41. Okada, A.; Yamauchi, T.; Higashi, M.; Shimizu, T.; Uno, Y.: Development of coated wire electrode for high-performance WEDM (3rd Report)—effects of wire surface unevenness on wire EDM characteristics. J. Jap. Soc Elect. Mach. Eng. 43, 179–186 (2009)

    Google Scholar 

  42. Otsuka, Y.; Nakai, Y.; Numano, M.; Maruyama, T.; Ohkubo, N.; Kishida, H.: Development of high-speed electrode wire for wire electro-discharge machining. SEI Techn. Rev. 51, 133–136 (2001)

    Google Scholar 

  43. Wright, R.N.: Wire Technology: Process Engineering and Metallurgy (1-ed.)”, Butterworth-Heinemann (2010)

  44. MAKINO The Hidden Cost Of EDM Wire Consumption. Modern machine shop (2009) http://www.mmsonline.com/articles/the-hidden-cost-of-edm-wire-consumption

  45. Yeo, S.H.; Tan, H.C.; New, A.K.: Assessment of waste streams in electric-discharge machining for environmental impact analysis. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 212(5), 393–401 (1998)

    Article  Google Scholar 

  46. Pramanik, A.; Basak, A.K.: Sustainability in wire electrical discharge machining of titanium alloy: Understanding wire rupture. J. Clean. Prod. 198, 472–479 (2018)

    Article  Google Scholar 

  47. Janaka, R.G.; Anjali, K.M.D.; Dimitrios, C.; Mohammad, A.: Sustainable machining: Process energy optimisation of wire electrodischarge machining of Inconel and titanium superalloys. J. Clean. Prod. 164, 642–651 (2017)

    Article  Google Scholar 

  48. Dhanik, S.; Xirouchakis, P.; Perez, R.: A System for Resource Efficient Process Planning for Wire EDM. In: Hesselbach, J., Herrmann, C. (Eds.), Glocalized Solutions for Sustainability in Manufacturing: Proceedings of the 18th CIRP International Conference on Life Cycle Engineering, Technische Universität Braunschweig, Braunschweig, Germany, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 219–224 (2011)

Download references

Acknowledgements

The authors would like to acknowledge King Fahd University of Petroleum & Minerals, University of Malaya, and Kafrelsheikh University for providing support. This research work is funded by the KFUPM Internal Funded Grant (DSR) Project Code: DF191046.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmed A. D. Sarhan or Ibrahem Maher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarhan, A.A.D., Maher, I. & Hamdi, M. Development of a New Cost Performance Index (CPI) for Selecting the Most Suitable Wire Electrode in Wire-EDM Machining. Arab J Sci Eng 46, 12465–12478 (2021). https://doi.org/10.1007/s13369-021-05989-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05989-7

Keywords

Navigation