Skip to main content
Log in

Novel Aerogel Absorbent Derived from Iron Tailings Via Atmospheric Drying

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Silica-based aerogel composite was prepared adopting sol–gel technique combined with atmospheric drying method utilizing waste environmentally hazardous iron tailings. High-temperature alkali fusion was applied to extract the Si, Al and Fe in the tailings so as to maximize recovery of valuable elements. The SiO2-Al2O3 (SA) and SiO2-Al2O3-Fe2O3 (SAF) aerogel composites were subjected to assess its adsorption capacity for macromolecules, utilizing methylene blue (MB) as the adsorbate. The specific surface areas of the SA and SAF aerogel were estimated to be 922.03 m2/g and 683.84 m2/g. The equilibrium adsorption capacity for MB was estimated to be 318.47 mg/g and 334.44 mg/g, respectively. Although the specific surface area of SAF was lower than SA, it offered higher MB adsorption capacity which could be attributed to the presence of iron oxide. The results promised utilization of iron tailing generated aerogel composite as a potential adsorbent for separation of high molecular weight compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Rao, A.P.; Rao, A.V.; Pajonk, G.M.: Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Appl. Surf. Sci. 253, 6032–6040 (2007)

    Article  Google Scholar 

  2. Gurav, J.L.; Jung, I.-K.; Park, H.-H.; Kang, E.S.; Nadargi, D.Y.: Silica aerogel: synthesis and applications. J. Nanomater. 2010, 1–11 (2010)

    Article  Google Scholar 

  3. Berestok, T.; Guardia, P.; Du, R.; Portals, J.B.; Colombo, M.; Estrade, S.; Peiro, F.; Brock, S.L.; Cabot, A.: Metal oxide aerogels with controlled crystallinity and faceting from the epoxide-driven cross-linking of colloidal nanocrystals. ACS Appl. Mater. Interfaces. 10, 16041–16048 (2018)

    Article  Google Scholar 

  4. Kistler, S.S.: Coherent expanded-aerogels. J. Phys. Chem. 36, 52–64 (1931)

    Article  Google Scholar 

  5. García-González, C.A.; Alnaief, M.; Smirnova, I.: Polysaccharide-based aerogels—promising biodegradable carriers for drug delivery systems. Carbohyd. Polym. 86, 1425–1438 (2011)

    Article  Google Scholar 

  6. Wiehn, M.; Levario, T.J.; Staggs, K.; Linneen, N.; Wang, Y.; Pfeffer, R.; Lin, Y.S.; Nielsen, D.R.: Adsorption of short-chain alcohols by hydrophobic silica aerogels. Ind. Eng. Chem. Res. 52, 18379–18385 (2013)

    Article  Google Scholar 

  7. Perdigoto, M.L.; Martins, R.C.; Rocha, N.; Quina, M.J.; Gando-Ferreira, L.; Patricio, R.; Duraes, L.: Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions. J. Colloid Interface Sci. 380, 134–140 (2012)

    Article  Google Scholar 

  8. Abolghasemi Mahani, A.; Motahari, S.; Mohebbi, A.: Sol-gel derived flexible silica aerogel as selective adsorbent for water decontamination from crude oil. Mar. Pollut. Bull. 129, 438–447 (2018)

    Article  Google Scholar 

  9. Liu, H.; Sha, W.; Cooper, A.T.; Fan, M.: Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloid Surf. A. 347, 38–44 (2009)

    Article  Google Scholar 

  10. Gurav, J.L.; Rao, A.V.; Nadargi, D.Y.; Park, H.-H.: Ambient pressure dried TEOS-based silica aerogels: good absorbents of organic liquids. J. Mater. Sci. 45, 503–510 (2010)

    Article  Google Scholar 

  11. Bi, H.; Yin, Z.; Cao, X.; Xie, X.; Tan, C.; Huang, X.; Chen, B.; Chen, F.; Yang, Q.; Bu, X.; Lu, X.; Sun, L.; Zhang, H.: Carbon fiber aerogel made from raw cotton: a novel, efficient and recyclable sorbent for oils and organic solvents. Adv. Mater. 25, 5916–5921 (2013)

    Article  Google Scholar 

  12. Li, Y.-Q.; Samad, Y.A.; Polychronopoulou, K.; Alhassan, S.M.; Liao, K.: Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACS Sustain. Chem. Eng. 2, 1492–1497 (2014)

    Article  Google Scholar 

  13. Alatalo, S.M.; Pileidis, F.; Makila, E.; Sevilla, M.; Repo, E.; Salonen, J.; Sillanpaa, M.; Titirici, M.M.: Versatile cellulose-based carbon aerogel for the removal of both cationic and anionic metal contaminants from water. ACS Appl. Mater. Interfaces. 7, 25875–25883 (2015)

    Article  Google Scholar 

  14. Wang, Y.; Zhu, L.; Zhu, F.; You, L.; Shen, X.; Li, S.: Removal of organic solvents/oils using carbon aerogels derived from waste durian shell. J. Taiwan Inst. Chem. E. 78, 351–358 (2017)

    Article  Google Scholar 

  15. Tian, X.; Liu, J.; Wang, Y.; Shi, F.; Shan, Z.; Zhou, J.; Liu, J.: Adsorption of antibiotics from aqueous solution by different aerogels. J. Non-Cryst. Solids. 505, 72–78 (2019)

    Article  Google Scholar 

  16. Nagapriya, S.; Ajith, M.R.; Sreemoolanadhan, H.; Mathew, M.; Sharma, S.C.: Hydrophobic silica aerogels by ambient pressure drying. Mater. Sci. Forum. 830–831, 476–479 (2015)

    Article  Google Scholar 

  17. Parale, V.G.; Han, W.; Jung, H.N.R.; Lee, K.Y.; Park, H.H.: Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area. Solid State Sci. 75, 63–70 (2018)

    Article  Google Scholar 

  18. Rao, A.V.; Bhagat, S.D.; Hirashima, H.; Pajonk, G.M.: Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interface Sci. 300, 279–285 (2006)

    Article  Google Scholar 

  19. Feng, Q.G.; Chen, K.; Ma, D.C.; Lin, H.Y.; Liu, Z.; Qin, S.; Luo, Y.: Synthesis of high specific surface area silica aerogel from rice husk ash via ambient pressure drying. Colloid Surf. A. 539, 399–406 (2018)

    Article  Google Scholar 

  20. Liu, S.W.; Wei, Q.; Cui, S.P.; Nie, Z.R.; Du, M.H.; Li, Q.-Y.: Hydrophobic silica aerogel derived from wheat husk ash by ambient pressure drying. J. Sol-gel Sci. Technol. 78, 60–67 (2016)

    Article  Google Scholar 

  21. Li, T.; Wang, T.: Preparation of silica aerogel from rice hull ash by drying at atmospheric pressure. Mater. Chem. Phys. 112, 398–401 (2008)

    Article  Google Scholar 

  22. Parvathy, R.A.; Venkateswara, R.A.; Pajonk, G.M.; Shewale, P.M.: Effect of solvent exchanging process on the preparation of the hydrophobic silica aerogels by ambient pressure drying method using sodium silicate precursor. J Mater Sci. 42, 8418–8425 (2007)

    Article  Google Scholar 

  23. De Pooter, S.; Latré, S.; Desplentere, F.; Seveno, D.: Optimized synthesis of ambient pressure dried thermal insulating silica aerogel powder from non-ion exchanged water glass. J. Non-Cryst. Solids. 499, 217–226 (2018)

    Article  Google Scholar 

  24. Omranpour, H.; Motahari, S.: Effects of processing conditions on silica aerogel during aging: role of solvent, time and temperature. J. Non-Cryst. Solids. 379, 7–11 (2013)

    Article  Google Scholar 

  25. Iswar, S.; Malfait, W.J.; Balog, S.; Winnefeld, F.; Lattuada, M.; Koebel, M.M.: Effect of aging on silica aerogel properties. Micropor. Mesopor. Mat. 241, 293–302 (2017)

    Article  Google Scholar 

  26. Shimizu, T.; Kanamori, K.; Maeno, A.; Kaji, H.; Nakanishi, K.: Transparent, highly insulating polyethyl- and polyvinylsilsesquioxane aerogels: mechanical improvements by vulcanization for ambient pressure drying. Chem. Mater. 28, 6860–6868 (2016)

    Article  Google Scholar 

  27. Shimizu, T.; Kanamori, K.; Maeno, A.; Kaji, H.; Nakanishi, K.: Transparent ethylene-bridged polymethylsiloxane aerogels and xerogels with improved bending flexibility. Langmuir 32, 13427–13434 (2016)

    Article  Google Scholar 

  28. Zhang, S.; Xue, X.; Liu, X.; Duan, P.; Yang, H.; Jiang, T.; Wang, D.; Liu, R.: Current situation and comprehensive utilization of iron ore tailing resources. J. Min. Sci. 42, 403–408 (2006)

    Article  Google Scholar 

  29. Yang, C.; Chong, C.; Qin, J.; Cui, X.: Characteristics of the fired bricks with low-silicon iron tailings. Constr. Build Mater. 70, 36–42 (2014)

    Article  Google Scholar 

  30. Ma, B.-G.; Cai, L.-X.; Li, X.-G.; Jian, S.-W.: Utilization of iron tailings as substitute in autoclaved aerated concrete: physico-mechanical and microstructure of hydration products. J. Clean. Prod. 127, 162–171 (2016)

    Article  Google Scholar 

  31. Xiong, C.; Li, W.; Jiang, L.; Wang, W.; Guo, Q.: Use of grounded iron ore tailings (GIOTs) and BaCO3 to improve sulfate resistance of pastes. Constr. Build Mater. 150, 66–76 (2017)

    Article  Google Scholar 

  32. Mendes, B.C.; Pedroti, L.G.; Fontes, M.P.F.; Ribeiro, J.C.L.; Vieira, C.M.F.; Pacheco, A.A.; Azevedo, A.R.G.D.: Technical and environmental assessment of the incorporation of iron ore tailings in construction clay bricks. Constr. Build Mater. 227, 116669 (2019)

    Article  Google Scholar 

  33. Das, S.K.; Kumar, S.; Ramachandrarao, P.: Exploitation of iron ore tailing for the development of ceramic tiles. Waste Manag. 20, 725–729 (2000)

    Article  Google Scholar 

  34. Yao, R.; Liao, S.Y.; Dai, C.L.; Liu, Y.C.; Chen, X.Y.; Zheng, F.: Preparation and characterization of novel glass-ceramic tile with microwave absorption properties from iron ore tailings. J. Magn. Magn. Mater. 378, 367–375 (2015)

    Article  Google Scholar 

  35. La Parola, V.; Deganello, G.; Scirè, S.; Venezia, A.M.: Effect of the Al/Si atomic ratio on surface and structural properties of sol–gel prepared aluminosilicates. J. Solid State Chem. 174, 482–488 (2003)

    Article  Google Scholar 

  36. Szczygieł, I.; Matraszek, A.; Chęcmanowski, J.; Szczygieł, B.: Thermal behaviour of mixed alumina–silica gels obtained from alkoxides: phase formation and morphology of powders. J. Non-Cryst. Solids. 356, 2824–2830 (2010)

    Article  Google Scholar 

  37. Aravind, P.R.; Mukundan, P.; Krishna, P.P.; Warrier, K.G.K.: Mesoporous silica–alumina aerogels with high thermal pore stability through hybrid sol–gel route followed by subcritical drying. Micropor. Mesopor. Mat. 96, 14–20 (2006)

    Article  Google Scholar 

  38. Wu, X.; Shao, G.; Cui, S.; Wang, L.; Shen, X.: Synthesis of a novel Al2O3–SiO2 composite aerogel with high specific surface area at elevated temperatures using inexpensive inorganic salt of aluminum. Ceram. Int. 42, 874–882 (2016)

    Article  Google Scholar 

  39. Sehlleier, Y.H.; Hardt, S.; Schulz, C.; Wiggers, H.: A novel magnetically-separable porous iron-oxide nanocomposite as an adsorbent for methylene blue (MB) dye. J. Environ. Chem. Eng. 4, 3779–3787 (2016)

    Article  Google Scholar 

  40. Zhang, P.; O’Connor, D.; Wang, Y.; Jiang, L.; Hou, D.: A green biochar/iron oxide composite for methylene blue removal. J. Hazard. Mater. 384, 121286 (2019)

    Article  Google Scholar 

  41. Zhang, C.Q.; Li, S.Q.: Utilization of iron ore tailing for the synthesis of zeolite A by hydrothermal method. J. Mater. Cycles Waste. 20, 1605–1614 (2018)

    Article  Google Scholar 

  42. Hu, W.B.; Li, M.M.; Chen, W.; Zhang, N.; Li, B.; Wang, M.; Zhao, Z.: Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure. Colloid Surf. A. 501, 83–91 (2016)

    Article  Google Scholar 

  43. Yoo, J.K.; Kong, H.J.; Wagle, R.; Shon, B.H.; Kim, I.K.; Kim, T.H.: A study on the methods for making iron oxide aerogel. J. Ind. Eng. Chem. 72, 332–337 (2019)

    Article  Google Scholar 

  44. Ji, X.F.; Zhou, Q.; Qiu, G.B.; Peng, B.; Guo, M.; Zhang, M.: Synthesis of an alumina enriched Al2O3-SiO2 aerogel: reinforcement and ambient pressure drying. J. Non-Cryst. Solids. 471, 160–168 (2017)

    Article  Google Scholar 

  45. Abdelrahman, E.A.; Hegazey, R.M.; El-Azabawy, R.E.: Efficient removal of methylene blue dye from aqueous media using Fe/Si, Cr/Si, Ni/Si, and Zn/Si amorphous novel adsorbents. J. Mater. Res. Technol. 8, 5301–5313 (2019)

    Article  Google Scholar 

  46. Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015)

    Article  Google Scholar 

  47. Sangwichien, C.; Aranovich, G.L.; Donohue, M.D.: Density functional theory predictions of adsorption isotherms with hysteresis loops. Colloid Surf. A. 206, 313–320 (2002)

    Article  Google Scholar 

  48. Gan, L.H.; Xu, Z.J.; Feng, Y.; Chen, L.W.: Synthesis of alumina aerogels by ambient drying method and control of their structures. J. Porous Mat. 12, 317–321 (2005)

    Article  Google Scholar 

  49. Orlović, A.; Janaćković, D.; Skala, D.: Alumina/silica aerogel with zinc chloride alkylation catalyst: Influence of supercritical drying conditions and aerogel structure on alkylation catalytic activity. Catal. Commun. 3, 119–123 (2002)

    Article  Google Scholar 

  50. Zu, G.; Shen, J.; Wei, X.; Ni, X.; Zhang, Z.; Wang, J.; Liu, G.: Preparation and characterization of monolithic alumina aerogels. J. Non-Cryst. Solids. 357, 2903–2906 (2011)

    Article  Google Scholar 

  51. Yu, H.; Jiang, Y.; Lu, Y.; Li, X.; Zhao, H.; Ji, Y.; Wang, M.: Quartz fiber reinforced Al2O3-SiO2 aerogel composite with highly thermal stability by ambient pressure drying. J. Non-Cryst. Solids. 505, 79–86 (2019)

    Article  Google Scholar 

  52. Horiuchi, T.; Chen, L.; Osaki, T.; Mori, T.: Thermally stable alumina–gallia aerogel as a catalyst for NO reduction with C3H6 in the presence of excess oxygen. Catal. Lett. 72, 77–81 (2001)

    Article  Google Scholar 

  53. Zhu, H.Y.; Jiang, R.; Xiao, L.; Li, W.: A novel magnetically separable gamma-Fe2O3/crosslinked chitosan adsorbent: preparation, characterization and adsorption application for removal of hazardous azo dye. J. Hazard. Mater. 179, 251–257 (2010)

    Article  Google Scholar 

  54. Dong, G.; Tian, G.; Gong, L.; Tang, Q.; Li, M.; Meng, J.; Liang, J.: Mesoporous zinc silicate composites derived from iron ore tailings for highly efficient dye removal: structure and morphology evolution. Micropor. Mesopor. Mat. 305, 110352 (2020)

    Article  Google Scholar 

  55. Silva, L.A.D.; Borges, S.M.S.; Paulino, P.N.; Fraga, M.A.; Oliva, S.T.D.; Marchetti, S.G.; Rangel, M.D.C.: Methylene blue oxidation over iron oxide supported on activated carbon derived from peanut hulls. Catal. Today. 289, 237–248 (2017)

    Article  Google Scholar 

  56. Sun, L.; Wan, S.; Yuan, D.; Yu, Z.: Adsorption of nitroimidazole antibiotics from aqueous solutions on self-shaping porous biomass carbon foam pellets derived from Vallisneria natans waste as a new adsorbent. Sci. Total Environ. 664, 24–36 (2019)

    Article  Google Scholar 

  57. Amini, T.F.; Nabizadeh, R.; Nasseri, S.; Mesdaghinia, A.; Khorsandi, H.; Mahvi, A.H.; Gholibegloo, E.; Alimohammadi, M.; Khoobi, M.: Endotoxin removal from aqueous solutions with dimethylamine-functionalized graphene oxide: modeling study and optimization of adsorption parameters. J. Hazard. Mater. 368, 163–177 (2019)

    Article  Google Scholar 

  58. Han, H.K.; Wei, W.; Jiang, Z.F.; Lu, J.; Zhu, J.; Xie, J.: Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloid Surf. A. 509, 539–549 (2016)

    Article  Google Scholar 

  59. Liu, G.Q.; Yang, R.; Li, M.: Liquid adsorption of basic dye using silica aerogels with different textural properties. J. Non-Cryst. Solids. 356, 250–257 (2010)

    Article  Google Scholar 

  60. Duman, O.; Polat, T.G.; Diker, C.O.; Tunc, S.: Agar/kappa-carrageenan composite hydrogel adsorbent for the removal of methylene blue from water. Int. J. Biol. Macromol. 160, 823–835 (2020)

    Article  Google Scholar 

  61. Yan, B.; Chen, Z.; Cai, L.; Chen, Z.; Fu, J.; Xu, Q.: Fabrication of polyaniline hydrogel: synthesis, characterization and adsorption of methylene blue. Appl. Surf. Sci. 356, 39–47 (2015)

    Article  Google Scholar 

  62. Chen, R.; Zhang, Y.; Shen, L.; Wang, X.; Chen, J.; Ma, A.; Jiang, W.: Lead(II) and methylene blue removal using a fully biodegradable hydrogel based on starch immobilized humic acid. Chem. Eng. J. 268, 348–355 (2015)

    Article  Google Scholar 

  63. Beh, J.H.; Lim, T.H.; Lew, J.H.; Lai, J.C.: Cellulose nanofibril-based aerogel derived from sago pith waste and its application on methylene blue removal. Int J Biol Macromol. 160, 836–845 (2020)

    Article  Google Scholar 

  64. Chan, C.H.; Chia, C.H.; Zakaria, S.; Sajab, M.S.; Chin, S.X.: Cellulose nanofibrils: a rapid adsorbent for the removal of methylene blue. Rsc Adv. 5, 18204–18212 (2015)

    Article  Google Scholar 

  65. Ho, Y.-S.: Review of second-order models for adsorption systems. J. Hazard. Mater. 136, 681–689 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the National Key Research and Development Project (2019YFC1904601) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhui Duan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, W., Liu, X., Srinivasakannan, C. et al. Novel Aerogel Absorbent Derived from Iron Tailings Via Atmospheric Drying. Arab J Sci Eng 47, 6901–6914 (2022). https://doi.org/10.1007/s13369-021-05973-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05973-1

Keywords

Navigation