Skip to main content

Advertisement

Log in

Propagation and Attenuation of Blast Vibration Waves in Closely Spaced Tunnels: A Case Study

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The closely spaced tunnels structure has been widely used in traffic tunnels, hydropower stations, collieries and underground metal mines. Blasting has important implications for the construction of these closely spaced tunnels. Due to the effect of multi-free surfaces and the appearance of excavation damaged zones (EDZs), the propagation and attenuation of blast vibration are expected to be more complex than in ordinary separated tunnels. In this study, field tests including ultrasonic tests and vibration tests were conducted during the excavation process of a closely spaced tunnels project, then a series of three-dimensional dynamic calculations considering explosive velocity detonation were conducted to study the propagation and attenuation of blast vibration. The results indicate that in closely spaced tunnels, EDZs have evident amplification effects on the vibration intensity, especially on the Rayleigh waves propagating longitudinally. The small clear distance and larger dimensionless wavenumber lead to the asymmetric distribution of vibration velocity, and the side wall located in the wave incident side is more easily damaged. In tunnel blasting, the maximum Peak Particle Velocity often appears around the heading face, while the maximum value appears at 1.5–3.0 m behind the heading face section for adjacent tunnels. The results of this study can be applied in the design of blasting and monitoring scheme of closely spaced tunnels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kahriman, A.: Analysis of ground vibrations caused by bench blasting at can open-pit lignite mine in Turkey. Environ. Geol. 41(6), 653–661 (2002). https://doi.org/10.1007/s00254-001-0446-2

    Article  Google Scholar 

  2. Kumar, R.; Choudhury, D.; Bhargava, K.: Determination of blast-induced ground vibration equations for rocks using mechanical and geological properties. J. Rock Mech. Geotech. Eng. 8(3), 341–349 (2016). https://doi.org/10.1016/j.jrmge.2015.10.009

    Article  Google Scholar 

  3. Duvall, W.I.; Petkof, B.: Spherical Propagation of Explosion-Generated Strain Pulses in Rock. United States Department of the Interior, Bureau of Mines, Washington DC (1958)

    Google Scholar 

  4. Nicholls, H.R.; Charles, F.J.; Duvall, W.I.: Blasting Vibrations and Their Effects on Structures. U.S. Department of the Interior, Bureau of Mines, Washington, DC (1971)

    Google Scholar 

  5. Ghosh, A.; Daemen, J.K.: A simple new blast vibration predictor. In: Proceedings of the 24th U.S. Symposium of Rock Mechanics, pp. 151–161. Texas, USA (1983). https://doi.org/10.1111/j.1399-3089.2004.00163.x

  6. Kumar, R.; Choudhury, D.; Bhargava, K.: Prediction of blast-induced vibration parameters for soil sites. Int. J. Geomech. 14(3), 04014007 (2014). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000355

    Article  Google Scholar 

  7. Kumar, R.; Choudhury, D.; Bhargava, K.: Response of shallow foundation in rocks subjected to underground blast loading using FLAC3D. Disaster Adv. 7(2), 64–71 (2014)

    Google Scholar 

  8. Blair, D.P.: The measurement, modelling and control of ground vibration due to blasting. In: Second International Symposium Rock Fragmentation by Blasting, pp. 88–101. Colorado (1987)

  9. Hinzen, K.G.: Modelling of blast vibrations. Int. J. Rock Mech. Min. Sci. Geomech. Abstracts 25(6), 439–445 (1988). https://doi.org/10.1016/0148-9062(88)90984-9

    Article  Google Scholar 

  10. Blair, D.P.: Seismic radiation from an explosive column. Geophysics 75(1), 55–65 (2010). https://doi.org/10.1190/1.3294860

    Article  Google Scholar 

  11. Blair, D.P.: The free surface influence on blast vibration. Int. J. Rock Mech. Min. Sci. 77, 182–191 (2015). https://doi.org/10.1016/j.ijrmms.2015.04.006

    Article  Google Scholar 

  12. Persson, P.A.; Holmberg, R.; Lee, J.: Rock Blasting and Explosives Engineering. CRC Press, Boca Raton, FL (1993) https://doi.org/10.1016/0148-9062(95)99213-H

    Book  Google Scholar 

  13. Malmgren, L.; Saiang, D.; Töyrä, J.; Bodare, A.: The excavation disturbed zone (EDZ) at Kiirunavaara mine, Sweden—by seismic measurements. J. Appl. Geophys. 61(1), 1–15 (2007). https://doi.org/10.1016/j.jappgeo.2006.04.004

    Article  Google Scholar 

  14. Ministry of Transport of the People’s Republic of China: Code for Design of Road Tunnel JTG D70–2004. China Communications Press, Beijing (2004) https://doi.org/10.1016/S0022-3468(79)80662-4

    Book  Google Scholar 

  15. Brady, B.H.G.; Brown, E.T.: Rock Mechanics for Underground Mining. Springer, The Netherlands (1985) https://doi.org/10.1002/eqe.4290140510

    Book  Google Scholar 

  16. Kutter, H.K.; Fairhurst, C.: On the Fracture Process in Blasting. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 8(3), 181–202 (1971). https://doi.org/10.1016/0148-9062(71)90018-0

    Article  Google Scholar 

  17. Yang, J.; Cai, J.; Yao, C.; Li, P.; Jiang, Q.; Zhou, C.: Comparative study of tunnel blast-induced vibration on tunnel surfaces and inside surrounding rock. Rock Mech. Rock Eng. 52, 4747–4761 (2019). https://doi.org/10.1007/s00603-019-01875-9

    Article  Google Scholar 

  18. Esen, S.; Onederra, I.; Bilgin, H.A.: Modelling the size of the crushed zone around a blasthole. Int. J. Rock Mech. Min. Sci. 40, 485–495 (2003). https://doi.org/10.1016/S1365-1609(03)00018-2

    Article  Google Scholar 

  19. Yilmaz, O.; Unlu, T.: Three dimensional numerical rock damage analysis under blasting load. Tunn. Undergr. Space Technol. 38(9), 266–278 (2013). https://doi.org/10.1016/j.tust.2013.07.007

    Article  Google Scholar 

  20. Saharan, M.R.; Mitri, H.: Numerical procedure for dynamic simulation of discrete fractures due to blasting. Rock Mech. Rock Eng. 41(5), 641–670 (2008). https://doi.org/10.1007/s00603-007-0136-9

    Article  Google Scholar 

  21. Duvall, W.I.: Strain wave shapes in rock near explosions. Geophysics 18(2), 310–323 (1953). https://doi.org/10.1190/1.1437875

    Article  Google Scholar 

  22. Jung, W.J.; Utagava, M.; Ogata, Y.; Seto, M.; Katsuyama, K.; Miyake, A.; Ogava, T.: Effects of rock pressure on crack generation during tunnel blasting. J. Japan Explos. Soc. 62(3), 138–146 (2001). https://doi.org/10.1046/j.1365-201x.2000.00762.x

    Article  Google Scholar 

  23. Lima, A.D.R.; Romanel, C.; Roehl, D.M.; Araujo, T.D.: An adaptive strategy for the dynamic analysis of rock fracturing by blasting. In: Proceedings of the International Conference of Computational Engineering and Science (ICES’02). Reno, Nevada (2002)

  24. Robertson, N.J.; Hayhurst, C.J.; Fairlie, G.E.: Numerical simulation of explosion phenomena. Int. J. Comput. Appl. Technol. 7(3), 316–329 (1994). https://doi.org/10.1504/IJCAT.1994.062536

    Article  Google Scholar 

  25. Blair, D.P.: Blast vibration control in the presence of delay scatter and random fluctuations between blastholes. Int. J. Numer. Anal. Meth. Geomech. 17(2), 95–118 (2010). https://doi.org/10.1002/nag.1610170203

    Article  Google Scholar 

  26. Hustrulid, W.A.: Blasting Principles for Open Pit Mining. A.A. Balkema Publishers, Brookfield, Canada (1999)

    Google Scholar 

  27. Blair, D.; Minchinton, A.: On the damage zone surrounding a single blasthole. Fragblast 1(1), 59–72 (1997). https://doi.org/10.1080/13855149709408390

    Article  Google Scholar 

  28. Zhang, Q.B.; Zhao, J.A.: Review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech. Rock Eng. 47(4), 1411–1478 (2014). https://doi.org/10.1007/s00603-013-0463-y

    Article  Google Scholar 

  29. Wang, S.; Wu, Z.; Dong, W.: Test on elastic wave of rock masses in hydropower engineering. The Institute of Geology, China Academy of Science Editors, Problems on engineering geological mechanics of rock mass (3). Science Press, Beijing, pp. 229–253 (in Chinese) (1980)

  30. Dai, J.: Dynamical Properties of Rock and Blasting Theory. Metallurgical Industry Press, Beijing (2002).

    Google Scholar 

  31. General Administration of Quality Supervision Inspection and Quarantine of PRC: Safety Regulations for Blasting (GB6722-2014). Chinese Standard Press, Beijing (2015)

    Google Scholar 

  32. Xia, X.; Li, J.R.; Li, H.B.; Liu, Y.Q.; Zhou, Q.C.: UDEC modeling of vibration characteristics of jointed rock mass under explosion. Yantu Lixue/Rock Soil Mech. 26, 50–56 (2005). https://doi.org/10.16285/j.rsm.2005.01.012

    Article  Google Scholar 

  33. Blair, D.P.: Dynamic modelling of in-hole mounts for seismic detectors. Geophys. J. Int. 69(3), 803–817 (1982). https://doi.org/10.1111/j.1365-246X.1982.tb02775.x

    Article  Google Scholar 

  34. Cai, J.; Qiu X.; Su, Y.: Influence of hollow effect on ppv of wall rock under blasting load, IOP Conference Series: Earth and Environmental Science, vol. 719(3), 032031 (9pp) (2021)

  35. Yu, J.; Liu, S.; Tong, L.: Hollow effect induced by blasting vibration in shallow tunnels. J. Southeast Univ. (Nat. Sci. Edition) 40, 176–179 (2010)

    Google Scholar 

  36. Wang, H.L.; Wang, Z.S.; Bao, R.C.; Li, S.X.: Hollow effect induced by vibration in cross-harbor tunnel. Adv. Mater. Res. 199–200, 878–881 (2011)

    Article  Google Scholar 

  37. Li, Z.T.; Yin, R.S.; Meng, Y.F.; Deng, W.H.; Chen, L.J.: Analysis of vibration response and cavity effect of blasting construction of tunnel in soil-rock interlaced strata. Tunnel Constr. 38(04), 588–593 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Tian, Q., Fang, Y. et al. Propagation and Attenuation of Blast Vibration Waves in Closely Spaced Tunnels: A Case Study. Arab J Sci Eng 47, 4239–4252 (2022). https://doi.org/10.1007/s13369-021-05959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05959-z

Keywords

Navigation