Skip to main content
Log in

Comparative Study on Removal of Textile Dyes in Aqueous Medium by Adsorption Using Modified Drinking Water Treatment Sludge

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The adsorption study of anionic reactive blue 19 (RB19) and cationic methylene blue (MB) dyes from synthetic water was investigated using a new adsorbent. It was prepared from drinking water treatment sludge (DWTS) modified by iron nitrate. The surface area Brunauer, Emmett, and Teller BET increased from 15.58 to 106.12 m2/g after the iron incorporation. The adsorption of RB19 and MB on Fe-DWTS was carried out in a batch system to evaluate the effect of contact time (0–30 min), initial solution pH (2–8), Fe-DWTS dosage (0.5–2.5 g/L), and initial dye concentration (10–200 mg/L). The second-order kinetic model and Langmuir isotherm model provided the best fit to the experimental data for RB 19 and MB. The maximum adsorption capacities were found to be 40.16 and 46.08 mg/g for RB19 and MB, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Katheresan, V.; Kansedo, J.; Lau, S.Y.: Efficiency of various recent wastewater dye removal methods: a review. J. Environ. Chem. Eng. 6, 4676–4697 (2018). https://doi.org/10.1016/j.jece.2018.06.060

    Article  Google Scholar 

  2. Temel, F.; Turkyilmaz, M.; Kucukcongar, S.: Removal of methylene blue from aqueous solutions by silica gel supported calix[4]arene cage: Investigation of adsorption properties. Eur. Polym. J. 125, 109540 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109540

    Article  Google Scholar 

  3. Mantasha, I.; Hussain, S.; Ahmad, M.; Shahid, M.: Two dimensional (2D) molecular frameworks for rapid and selective adsorption of hazardous aromatic dyes from aqueous phase. Sep. Purif. Technol. (2020). https://doi.org/10.1016/j.seppur.2019.116413

    Article  Google Scholar 

  4. Ayazi, Z.; Khoshhesab, Z.M.; Norouzi, S.: Modeling and optimizing of adsorption removal of Reactive Blue 19 on the magnetite/graphene oxide nanocomposite via response surface methodology. Desalin. Water Treat. 57, 25301–25316 (2016). https://doi.org/10.1080/19443994.2016.1157705

    Article  Google Scholar 

  5. Deng, D.; Guo, J.; Zeng, G.; Sun, G.; Red, C.: Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11*. Int. Biodeterior. Biodegradation. 62, 263–269 (2008). https://doi.org/10.1016/j.ibiod.2008.01.017

    Article  Google Scholar 

  6. El-shishtawy, R.M.; El-zawahry, M.M.; Abdelghaffar, F.; Ahmed, N.S.E.: Nucleophilic addition of reactive dyes on amidoximated acrylic fabrics. Sci. world J. 2014, 1–11 (2014)

    Article  Google Scholar 

  7. Ogunleye, D.T.; Akpotu, S.O.; Moodley, B.: Adsorption of sulfamethoxazole and reactive blue 19 using graphene oxide modified with imidazolium based ionic liquid. Environ. Technol. Innov. 17, 100616 (2020). https://doi.org/10.1016/j.eti.2020.100616

    Article  Google Scholar 

  8. Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A.: Adsorption of methylene blue on low-cost adsorbents: a review. J. Hazard. Mater. 177, 70–80 (2010). https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  Google Scholar 

  9. Jadhav, A.J.; Srivastava, V.C.: Adsorbed solution theory based modeling of binary adsorption of nitrobenzene, aniline and phenol onto granulated activated carbon. Chem. Eng. J. 229, 450–459 (2013). https://doi.org/10.1016/j.cej.2013.06.021

    Article  Google Scholar 

  10. Boudechiche, N.; Fares, M.; Ouyahia, S.; Yazid, H.; Trari, M.: Comparative study on removal of two basic dyes in aqueous medium by adsorption using activated carbon from Ziziphus lotus stones. Microchem. J. 146, 1010–1018 (2019). https://doi.org/10.1016/j.microc.2019.02.010

    Article  Google Scholar 

  11. Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Nazli, Z.I.H.; Bhatti, H.N.; Nouren, S.: Dyes adsorption using clay and modified clay: A review. J. Mol. Liq. 256, 395–407 (2018). https://doi.org/10.1016/j.molliq.2018.02.034

    Article  Google Scholar 

  12. Marrakchi, F.; Hameed, B.H.; Hummadi, E.H.: Mesoporous biohybrid epichlorohydrin crosslinked chitosan/carbon—clay adsorbent for effective cationic and anionic dyes adsorption. Int. J. Biol. Macromol. 163, 1079–1086 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.032

    Article  Google Scholar 

  13. Brião, G.V.; Jahn, S.L.; Foletto, E.L.; Dotto, G.L.: Highly efficient and reusable mesoporous zeolite synthetized from a biopolymer for cationic dyes adsorption. Colloids Surfaces A Physicochem. Eng. Asp. 556, 43–50 (2018). https://doi.org/10.1016/j.colsurfa.2018.08.019

    Article  Google Scholar 

  14. Jiang, X.; Sun, Y.; Liu, L.; Wang, S.; Tian, X.: Adsorption of CI reactive blue 19 from aqueous solutions by porous particles of the grafted chitosan. Chem. Eng. J. 235, 151–157 (2014). https://doi.org/10.1016/j.cej.2013.09.001

    Article  Google Scholar 

  15. Gupta, V.K.: Suhas: application of low-cost adsorbents for dye removal: a review. J. Environ. Manage. 90, 2313–2342 (2009). https://doi.org/10.1016/j.jenvman.2008.11.017

    Article  Google Scholar 

  16. Adeniyi, A.G.; Ighalo, J.O.: Biosorption of pollutants by plant leaves : an empirical review. J. Environ. Chem. Eng. 7, 103100 (2019). https://doi.org/10.1016/j.jece.2019.103100

    Article  Google Scholar 

  17. Dahhou, M.; El Moussaouiti, M.; Arshad, M.A.; Moustahsine, S.; Assafi, M.: Synthesis and characterization of drinking water treatment plant sludge-incorporated Portland cement. J. Mater. Cycles Waste Manag. 20, 891–901 (2017). https://doi.org/10.1007/s10163-017-0650-0

    Article  Google Scholar 

  18. Dahhou, M.; Barbach, R.; El Moussaouiti, M.: Synthesis and characterization of belite-rich cement by exploiting alumina sludge. KSCE J. Civ. Eng. 23, 1150–1158 (2019). https://doi.org/10.1007/s12205-019-0178-z

    Article  Google Scholar 

  19. Benlalla, A.; Elmoussaouiti, M.; Dahhou, M.; Assafi, M.: Utilization of water treatment plant sludge in structural ceramics bricks. Appl. Clay Sci. 118, 171–177 (2015). https://doi.org/10.1016/j.clay.2015.09.012

    Article  Google Scholar 

  20. Fan, J.; He, Z.; Ma, L.Q.; Yang, Y.; Stoffella, P.J.: Impacts of calcium water treatment residue on the soil-water-plant system in citrus production. Plant Soil. 374, 993–1004 (2014). https://doi.org/10.1007/s11104-013-1881-z

    Article  Google Scholar 

  21. Rashed, M.N.; El-Daim-El-Taher, M.A.; Fadlalla, S.M.M.: Adsorption of methylene blue using modified adsorbents from drinking water treatment sludge. Water Sci. Technol. 74, 1885–1898 (2016). https://doi.org/10.2166/wst.2016.377

    Article  Google Scholar 

  22. Abo-El-Enein, S.A.; Shebl, A.; Abo El-Dahab, S.A.: Drinking water treatment sludge as an efficient adsorbent for heavy metals removal. Appl. Clay Sci. 146, 343–349 (2017). https://doi.org/10.1016/j.clay.2017.06.027

    Article  Google Scholar 

  23. Cheng, S.; Zhang, L.; Xia, H.; Peng, J.; Shu, J.; Li, C.: Ultrasound and microwave-assisted preparation of Fe-activated carbon as an effective low-cost adsorbent for dyes wastewater treatment. RSC Adv. 6, 78936–78946 (2016). https://doi.org/10.1039/c6ra14082c

    Article  Google Scholar 

  24. Xiao, W.; Jiang, X.; Liu, X.; Zhou, W.; Garba, Z.N.; Lawan, I.; Wang, L.; Yuan, Z.: Adsorption of organic dyes from wastewater by metal-doped porous carbon materials. J. Clean. Prod. (2020). https://doi.org/10.1016/j.jclepro.2020.124773

    Article  Google Scholar 

  25. Cottet, L.; Almeida, C.A.P.; Naidek, N.; Viante, M.F.; Lopes, M.C.; Debacher, N.A.: Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Appl. Clay Sci. 95, 25–31 (2014). https://doi.org/10.1016/j.clay.2014.03.023

    Article  Google Scholar 

  26. Čerović, L.S.; Milonjić, S.K.; Todorović, M.B.; Trtanj, M.I.; Pogozhev, Y.S.; Blagoveschenskii, Y.; Levashov, E.A.: Point of zero charge of different carbides. Colloids Surfaces A Physicochem. Eng. Asp. 297, 1–6 (2007). https://doi.org/10.1016/j.colsurfa.2006.10.012

    Article  Google Scholar 

  27. Jamalluddin, N.A.; Abdullah, A.Z.: Fe incorporated mesocellular foam as an effective and stable catalyst: Effect of Fe concentration on the characteristics and activity in Fenton-like oxidation of acid red B. J. Mol. Catal. A Chem. 414, 94–107 (2016). https://doi.org/10.1016/j.molcata.2016.01.006

    Article  Google Scholar 

  28. Bedia, J.; Monsalvo, V.M.; Rodriguez, J.J.; Mohedano, A.F.: Iron catalysts by chemical activation of sewage sludge with FeCl3 for CWPO. Chem. Eng. J. 318, 224–230 (2017). https://doi.org/10.1016/j.cej.2016.06.096

    Article  Google Scholar 

  29. Ayodele, O.B.; Lim, J.K.; Hameed, B.H.: Degradation of phenol in photo-Fenton process by phosphoric acid modified kaolin supported ferric-oxalate catalyst: optimization and kinetic modeling. Chem. Eng. J. 197, 181–192 (2012). https://doi.org/10.1016/j.cej.2012.04.053

    Article  Google Scholar 

  30. Yuan, P.; Annabi-Bergaya, F.; Tao, Q.; Fan, M.; Liu, Z.; Zhu, J.; He, H.; Chen, T.: A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay. J. Colloid Interface Sci. 324, 142–149 (2008). https://doi.org/10.1016/j.jcis.2008.04.076

    Article  Google Scholar 

  31. Silva, T.L.; Ronix, A.; Pezoti, O.; Souza, L.S.; Leandro, P.K.T.; Bedin, K.C.; Beltrame, K.K.; Cazetta, A.L.; Almeida, V.C.: Mesoporous activated carbon from industrial laundry sewage sludge: adsorption studies of reactive dye Remazol Brilliant Blue R. Chem. Eng. J. 303, 467–476 (2016). https://doi.org/10.1016/j.cej.2016.06.009

    Article  Google Scholar 

  32. Ayodele, O.B.; Lim, J.K.; Hameed, B.H.: Pillared montmorillonite supported ferric oxalate as heterogeneous photo-Fenton catalyst for degradation of amoxicillin. Appl. Catal. A Gen. 413–414, 301–309 (2012). https://doi.org/10.1016/j.apcata.2011.11.023

    Article  Google Scholar 

  33. Liu, L.; Wang, R.; Yu, J.; Hu, L.; Wang, Z.; Fan, Y.: Adsorption of Reactive Blue 19 from aqueous solution by chitin nanofiber-/nanowhisker-based hydrogels. RSC Adv. 8, 15804–15812 (2018). https://doi.org/10.1039/c8ra01563e

    Article  Google Scholar 

  34. Shanehsaz, M.; Seidi, S.; Ghorbani, Y.; Shoja, S.M.R.; Rouhani, S.: Polypyrrole-coated magnetic nanoparticles as an efficient adsorbent for RB19 synthetic textile dye: removal and kinetic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 481–486 (2015). https://doi.org/10.1016/j.saa.2015.04.114

    Article  Google Scholar 

  35. Gök, Ö.; Özcan, A.S.; Özcan, A.: Adsorption behavior of a textile dye of Reactive Blue 19 from aqueous solutions onto modified bentonite. Appl. Surf. Sci. 256, 5439–5443 (2010). https://doi.org/10.1016/j.apsusc.2009.12.134

    Article  Google Scholar 

  36. Ismail, B.; Hussain, S.T.; Akram, S.: Adsorption of methylene blue onto spinel magnesium aluminate nanoparticles: adsorption isotherms, kinetic and thermodynamic studies. Chem. Eng. J. 219, 395–402 (2013). https://doi.org/10.1016/j.cej.2013.01.034

    Article  Google Scholar 

  37. Brar, S.K.; Wangoo, N.; Sharma, R.K.: Enhanced and selective adsorption of cationic dyes using novel biocompatible self-assembled peptide fibrils. J. Environ. Manage. 255, 109804 (2020). https://doi.org/10.1016/j.jenvman.2019.109804

    Article  Google Scholar 

  38. Chinoune, K.; Bentaleb, K.; Bouberka, Z.; Nadim, A.; Maschke, U.: Adsorption of reactive dyes from aqueous solution by dirty bentonite. Appl. Clay Sci. 123, 64–75 (2016). https://doi.org/10.1016/j.clay.2016.01.006

    Article  Google Scholar 

  39. El-Bindary, A.A.; Abd El-Kawi, M.A.; Hafez, A.M.; Rashed, I.G.A.; Aboelnaga, E.E.: Removal of reactive blue 19 from aqueous solution using rice straw fly ash. J. Mater. Environ. Sci. 7, 1023–1036 (2016)

    Google Scholar 

  40. Almeida, C.A.P.; Debacher, N.A.; Downs, A.J.; Cottet, L.; Mello, C.A.D.: Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J. Colloid Interface Sci. 332, 46–53 (2009). https://doi.org/10.1016/j.jcis.2008.12.012

    Article  Google Scholar 

  41. Ding, L.; Zou, B.; Gao, W.; Liu, Q.; Wang, Z.; Guo, Y.; Wang, X.: Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids Surfaces A Physicochem. Eng. Asp. 446, 1–7 (2014). https://doi.org/10.1016/j.colsurfa.2014.01.030

    Article  Google Scholar 

  42. Ciobanu, G.; Barna, S.; Harja, M.: Kinetic and equilibrium studies on adsorption of Reactive Blue 19 dye from aqueous solutions by nanohydroxyapatite adsorbent. Arch. Environ. Prot. 42, 3–11 (2016). https://doi.org/10.1515/aep-2016-0014

    Article  Google Scholar 

  43. Ergene, A.; Ada, K.; Tan, S.; Katircioǧlu, H.: Removal of Remazol Brilliant Blue R dye from aqueous solutions by adsorption onto immobilized Scenedesmus quadricauda: equilibrium and kinetic modeling studies. Desalination 249, 1308–1314 (2009). https://doi.org/10.1016/j.desal.2009.06.027

    Article  Google Scholar 

  44. Al-Qodah, Z.; Lafi, W.K.; Al-Anber, Z.; Al-Shannag, M.; Harahsheh, A.: Adsorption of methylene blue by acid and heat treated diatomaceous silica. Desalination 217, 212–224 (2007). https://doi.org/10.1016/j.desal.2007.03.003

    Article  Google Scholar 

  45. Krishnan, G.R.; Radhika, R.; Jayalatha, T.; Jacob, S.; Rajeev, R.K.; George, B.; Anjali, B.R.: Removal of perchlorate from drinking water using granular activated carbon modified by acidic functional group: adsorption kinetics and equilibrium studies. Process Saf. Environ. Prot. 109, 158–171 (2017). https://doi.org/10.1016/j.psep.2017.03.014

    Article  Google Scholar 

  46. Abdelwahab, O.: Evaluation of the use of loofa activated carbons as potential adsorbents for aqueous solutions containing dye. Desalination 222, 357–367 (2008). https://doi.org/10.1016/j.desal.2007.01.146

    Article  Google Scholar 

  47. Abbas, M.; Trari, M.: Kinetic, equilibrium and thermodynamic study on the removal of Congo Red from aqueous solutions by adsorption onto apricot stone. Process Saf. Environ. Prot. 98, 424–436 (2015). https://doi.org/10.1016/j.psep.2015.09.015

    Article  Google Scholar 

  48. Yeddou Mezenner, N.; Lagha, H.; Kais, H.; Trari, M.: Biosorption of diazinon by a pre-treated alimentary industrial waste: equilibrium and kinetic modeling. Appl. Water Sci. 7, 4067–4076 (2017). https://doi.org/10.1007/s13201-017-0563-z

    Article  Google Scholar 

  49. Walker, G.M.; Hansen, L.; Hanna, J.A.; Allen, S.J.: Kinetics of a reactive dye adsorption onto dolomitic sorbents. Water Res. 37, 2081–2089 (2003). https://doi.org/10.1016/S0043-1354(02)00540-7

    Article  Google Scholar 

  50. Wakkel, M.; Khiari, B.; Zagrouba, F.: Textile wastewater treatment by agro-industrial waste: equilibrium modelling, thermodynamics and mass transfer mechanisms of cationic dyes adsorption onto low-cost lignocellulosic adsorbent. J. Taiwan Inst. Chem. Eng. 96, 439–452 (2019). https://doi.org/10.1016/j.jtice.2018.12.014

    Article  Google Scholar 

  51. Monsef Khoshhesab, Z.; Ahmadi, M.: Removal of reactive blue 19 from aqueous solutions using NiO nanoparticles: equilibrium and kinetic studies. Desalin. Water Treat. 57, 20037–20048 (2016). https://doi.org/10.1080/19443994.2015.1101713

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salima Laib.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 368 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laib, S., Rezzaz-Yazid, H. & Sadaoui, Z. Comparative Study on Removal of Textile Dyes in Aqueous Medium by Adsorption Using Modified Drinking Water Treatment Sludge. Arab J Sci Eng 47, 6085–6098 (2022). https://doi.org/10.1007/s13369-021-05950-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05950-8

Keywords

Navigation