Skip to main content
Log in

Computational Solutions of Fractional (2 + 1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation Using an Analytic Method and Application

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, an efficient \((G^{\prime}/G,\,1/G)\)-expansion method is adopted to resolve a famous (2 + 1)-dimensional fractional Ablowitz–Kaup–Newell–Segur (AKNS) water wave equation for the non-conservative system that plays a significant role in understanding the wave propagation. This work addresses the physical and dynamic behavior of some new exact trigonometric, hyperbolic, and rational solitary wave solutions in the form of 3D-plots and contour plots using different measures of parameters. The obtained results show the efficiency of the proposed method for the analytical treatment of nonlinear problems in mathematics, science and engineering and may be helpful in better understanding the propagating wave dynamics in diverse situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer (2011)

    Google Scholar 

  2. Das, S.: Functional Fractional Calculus. Springer (2011)

    Book  Google Scholar 

  3. El-Nabulsi, R.A.: Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 172(6), 1617–1640 (2018)

    Article  MathSciNet  Google Scholar 

  4. Dong, J.; Xu, M.: Space–time fractional Schrödinger equation with time-independent potentials. J. Math. Anal. Appl. 344(2), 1005–1017 (2008)

    Article  MathSciNet  Google Scholar 

  5. El-Nabulsi, R.A.: Emergence of quasiperiodic quantum wave functions in Hausdorff dimensional crystals and improved intrinsic Carrier concentrations. J. Phys. Chem. Solids 127, 224–230 (2019)

    Article  Google Scholar 

  6. Acan, O.; Al Qurashi, M.M.; Baleanu, D.: Reduced differential transform method for solving time and space local fractional partial differential equations. J. Nonlinear Sci. Appl. 10(10), 5230–5238 (2017)

    Article  MathSciNet  Google Scholar 

  7. Acan, O.; Baleanu, D.; Qurashi, M.M.A.; Sakar, M.G.: Analytical approximate solutions of (n + 1)-dimensional fractal heat-like and wave-like equations. Entropy 19(7), 296 (2017)

    Article  Google Scholar 

  8. Zulfiqar, A.; Ahmad, J.: Soliton solutions of fractional modified unstable Schrödinger equation using exp-function method. Results Phys 19, 103476 (2020)

    Article  Google Scholar 

  9. Zulfiqar, A.; Ahmad, J.: Exact solitary wave solutions of fractional modified Camassa–Holm equation using an efficient method. Alex. Eng. J. 59(5), 3565–3574 (2020)

    Article  Google Scholar 

  10. He, J.H.: Variational iteration method—a kind of non-linear analytical technique: some examples. Int J Nonlinear Mech 4, 699–708 (1999)

    Article  Google Scholar 

  11. Wazwaz, A.M.: A sine–cosine method for handling non-linear wave equations. Math. Compt. Model. 40(5), 499–508 (2004)

    Article  Google Scholar 

  12. Akbar, M.A.; Norhashidah, M.; Islam, M.T.: Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Math. 4(3), 397–411 (2019)

    Article  MathSciNet  Google Scholar 

  13. Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Emden–Fowler equation. App. Math. Compt 161, 543–560 (2005)

    Article  MathSciNet  Google Scholar 

  14. Liu, T.: Exact solutions to time-fractional fifth order KdV equation by trial equation method based on symmetry. Symmetry 11(6), 742 (2019)

    Article  Google Scholar 

  15. Tang, B.; He, Y.; Wei, L.; Zhang, X.: A generalized fractional sub-equation method for fractional differential equations with variable coefficients. Phys. Lett. A 376(38–39), 2588–2590 (2012)

    Article  MathSciNet  Google Scholar 

  16. Pandir, Y.; Duzgun, H.H.: New exact solutions of time fractional Gardner equation by using new version of F-expansion method. Commun. Theor. Phys. 67(1), 9 (2017)

    Article  Google Scholar 

  17. Dong, S.H.: Wave Equations in Higher Dimensions. Springer, Netherlands (2011)

    Book  Google Scholar 

  18. Li, L.X.; Li, E.Q.; Wang, M.L.: The (G′/G, 1/G)-expansion method and its application to travelling wave solutions of the Zakharov equations. Appl. Math.—J. Chin. Univ. 25(4), 454–462 (2010)

    Article  MathSciNet  Google Scholar 

  19. Zayed, E.M.E.; Abdelaziz, M.A.M.: The two-variable (G′/G, 1/G)-expansion method for solving the nonlinear KdV–mKdV equation. Math. Probl. Eng. 2012, 725061 (2012)

    Article  MathSciNet  Google Scholar 

  20. Zayed, E.M.E.; Alurrfi, K.A.E.: The (G′/G, 1/G)–expansion method and its applications to two nonlinear Schrödinger equations describing the propagation of femtosecond pulses in nonlinear optical fibers. Optik 127(4), 1581–1589 (2016)

    Article  Google Scholar 

  21. Uddin, M.H.; Akbar, M.A.; Khan, M.A.; Haque, M.A.: Families of exact traveling wave solutions to the space time fractional modified KdV equation and the fractional Kolmogorov–Petrovskii–Piskunovequation. J. Mech. Contin. Math. Sci. 13(1), 17–33 (2018)

    Google Scholar 

  22. Sirisubtawee, S.; Koonprasert, S.; Khaopant, C.; Porka, W.: Two reliable methods for solving the (3 + 1)-dimensional space-time fractional Jimbo–Miwa equation. Math. Probl. Eng. (2017). https://doi.org/10.1155/2017/9257019

    Article  MathSciNet  MATH  Google Scholar 

  23. López, R.C.; Sun, G.H.; Camacho-Nieto, O.; Yáñez-Márquez, C.; Dong, S.H.: Analytical traveling-wave solutions to a generalized Gross–Pitaevskii equation with some new time and space varying nonlinearity coefficients and external fields. Phys. Lett. A 381(35), 2978–2985 (2017)

    Article  Google Scholar 

  24. Shabat, A.; Zakharov, V.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Phys. JETP 34(1), 62 (1972)

    MathSciNet  Google Scholar 

  25. Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H.: Nonlinear-evolution equations of physical significance. Phys. Rev. Lett. 31(2), 125 (1973)

    Article  MathSciNet  Google Scholar 

  26. Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H.: The inverse scattering transform-Fourier analysis for nonlinear problems. Stud. Appl. Math. 53(4), 249–315 (1974)

    Article  MathSciNet  Google Scholar 

  27. Rogers, C.; Rogers, C.; Schief, W.K.: Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory, Vol. 30. Cambridge University Press (2002)

    Book  Google Scholar 

  28. Guo, B.; Ling, L.; Liu, Q.P.: Nonlinear Schrödinger Equation: Generalized Darboux Transformation and Rogue Wave Solutions. Phys. Rev. E 85(2), 026607 (2012)

    Article  Google Scholar 

  29. Helal, M.A.; Seadawy, A.R.; Zekry, M.H.: Stability analysis solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave equation. Appl. Math. Sci. 7(65–68), 3355–3365 (2013)

    MathSciNet  Google Scholar 

  30. Matveev, V.B.; Smirnov, A.O.: Solutions of the Ablowitz–Kaup–Newell–Segur hierarchy equations of the “rogue wave” type: a unified approach. Theor. Math. Phys. 186(2), 156–182 (2016)

    Article  MathSciNet  Google Scholar 

  31. Cheng, Z.L.; Hao, X.H.: The periodic wave solutions for a (2 + 1)-dimensional AKNS equation. Appl. Math. Comput. 234, 118–126 (2014)

    MathSciNet  MATH  Google Scholar 

  32. Ali, A.; Seadawy, A.R.; Lu, D.: Computational methods and traveling wave solutions for the fourth-order nonlinear Ablowitz–Kaup–Newell–Segur water wave dynamical equation via two methods and its applications. Open Phys. 16(1), 219–226 (2018)

    Article  Google Scholar 

  33. Yaslan, H.C.; Girgin, A.: New exact solutions for the conformable space-time fractional KdV, CDG, (2 + 1)-dimensional CBS and (2 + 1)-dimensional AKNS equations. J. Taibah Univ. Sci. 13(1), 1–8 (2018)

    Article  Google Scholar 

  34. Ferdous, F.; Hafez, M.G.: Oblique closed form solutions of some important fractional evolution equations via the modified Kudryashov method arising in physical problems. J. Ocean Eng. Sci. 3(3), 244–252 (2018)

    Article  Google Scholar 

  35. Gao, W.; Yel, G.; Baskonus, H.M.; Cattani, C.: Complex solitons in the conformable (2 + 1)-dimensional Ablowitz–Kaup–Newell–Segur equation. Aims Math. 5(1), 507–521 (2020)

    Article  MathSciNet  Google Scholar 

  36. Arbabi, S.; Najafi, M.; Najafi, M.: New soliton solutions of dissipative (2 + 1)-dimensional AKNS equation. IJAMS 1, 98–103 (2013)

    MATH  Google Scholar 

  37. Inan, I.E.; Duran, S.; Uğurlu, Y.: TAN (F(ξ/2))-expansion method for traveling wave solutions of AKNS and Burgers-like equations. Optik 138, 15–20 (2017)

    Article  Google Scholar 

  38. Güner, Ö.; Bekir, A.; Karaca, F.: Optical soliton solutions of nonlinear evolution equations using ansatz method. Optik 127(1), 131–134 (2016)

    Article  Google Scholar 

  39. Jumarie, G.: Modified Riemann–Liouville derivative and fractional Taylor series of non-differentiable functions further results. Comput. Math. Appl. 51, 1367–1376 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamshad Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulfiqar, A., Ahmad, J. Computational Solutions of Fractional (2 + 1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation Using an Analytic Method and Application. Arab J Sci Eng 47, 1003–1017 (2022). https://doi.org/10.1007/s13369-021-05917-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05917-9

Keywords

Navigation