Skip to main content
Log in

Process Optimisation and Tribological Behaviour Studies on Surface Modified Al 6061-T6 Alloy Deposited with WS2 Solid Lubricant Layer Through Electrical Discharge Approach

  • RESEARCH ARTICLE - SPECIAL ISSUE - Impact of Advanced Tribological Technologies on Modern Industry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this present work, an attempt has been made to deposit the WS2 layer on the Al 6061-T6 alloy surface through the electrical discharge deposition (EDD) technique. Specified deposition parameters, namely powder concentration (Cp), pulse-on time (Pon), and gap voltage (Vg) with various levels considered during the EDD process. The experimentation was performed for analysing the results of deposition parameters on material deposition rate (MDR), surface roughness (SR), microhardness (MH), layer thickness (LT), and surface characteristics of the WS2 layer were examined. The results addressed the various intermetallic compounds formed on the deposited surface. A multi-objective optimisation using Box–Behnken design of response surface methodology was utilised to conduct the deposition process. To predict and optimise the appropriate MDR, SR, MH, and LT, the quadratic model was developed using regression analysis and analysis of variance. Based on the developed model, the interaction effects of deposition parameters on the EDD process were explored. The optimal depositing parameters are determined by maximising the MDR and MH and minimising the SR and LT. The validation test results confirm that experimental data are good in agreement with the predicted results, and hence, the model is feasible to predict the responses adequately. The tribological study was carried out for the optimised condition, and surface characteristics on the worn-out surface were analysed. When compared to the base material, the obtained results show a lower coefficient of friction and specific wear rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Liew, P.J.; Yap, C.Y.; Wang, J.; Zhou, T.; Yan, J.: Surface modification and functionalization by electrical discharge coating: a comprehensive review. Int. J. Extreme Manuf. 2(1), 012004 (2020). https://doi.org/10.1088/2631-7990/ab7332

    Article  Google Scholar 

  2. Gutiérrez, A.G.G.; Sebastian, P.J.; Cacho, L.M.; Arco, E.B.; Campos, J.; Baron, A.: Surface modification of aluminum alloy 6061 for bipolar plate application: adhesion characteristics and corrosion resistance. Int. J. Electrochem. Sci. 13(4), 3958–3969 (2018). https://doi.org/10.20964/2018.04.122

    Article  Google Scholar 

  3. Fotovvati, B.; Namdari, N.; Dehghanghadikolaei, A.: On coating techniques for surface protection: a review. J. Manuf. Mater. Process. 3(1), 28 (2019). https://doi.org/10.3390/jmmp3010028

    Article  Google Scholar 

  4. Liu, Y.; Overzet, L.J.; Goeckner, M.J.: Chemical vapor deposition of aluminum from methylpyrrolidine alane complex. Thin Solid Films 510(1–2), 48–54 (2006). https://doi.org/10.1016/j.tsf.2005.12.156

    Article  Google Scholar 

  5. Dzhurinskiy, D.V.; Dautov, S.S.; Shornikov, P.G.; Akhatov, I.S.: Surface modification of aluminum 6061-O alloy by plasma electrolytic oxidation to improve corrosion resistance properties. Coatings 11(1), 1–13 (2021). https://doi.org/10.3390/coatings11010004

    Article  Google Scholar 

  6. Naveena, B.E.; Keshavamurthy, R.; Sekhar, N.: Dry sliding wear behaviour of plasma sprayed flyash–Al2O3 and flyash–SiC coatings on the Al6061 aluminum alloy. SILICON 11(3), 1575–1584 (2019). https://doi.org/10.1007/s12633-018-9978-x

    Article  Google Scholar 

  7. Quazi, M.M.; Fazal, M.A.; Haseeb, A.S.M.A.; Yusof, F.; Masjuki, H.H.; Arslan, A.: Laser-based surface modifications of aluminum and its alloys. Crit. Rev. Solid State Mater. Sci. 41(2), 106–131 (2016). https://doi.org/10.1080/10408436.2015.1076716

    Article  Google Scholar 

  8. Arun, I.; Yuvaraj, C.; Jyothibabu, P.; Sekhar Reddy, G.C.: Influence of silica on microstructural modification of electrical discharge composite coating and its wear performance. SILICON (2020). https://doi.org/10.1007/s12633-019-00333-z

    Article  Google Scholar 

  9. Haja Maideen, A.; Duraiselvam, M.; Varatharajulu, M.: Application of desirability function approach for optimized process parameters of electrical discharge alloying of Al 7075 with nickel powder. Trans. Indian Inst. Met. 72(7), 1901–1916 (2019). https://doi.org/10.1007/s12666-019-01666-4

    Article  Google Scholar 

  10. Stambekova, K.; Lin, H.; Uan, J.: Surface modification of 5083 Al alloy by electrical discharge alloying processing with a 75 mass % Si–Fe alloy electrode. Appl. Surf. Sci. 258(10), 4483–4488 (2012). https://doi.org/10.1016/j.apsusc.2012.01.013

    Article  Google Scholar 

  11. Mohanty, S.; Bhushan, B.; Das, A.K.; Dixit, A.R.: Production of hard and lubricating surfaces on miniature components through micro-EDM process. Int. J. Adv. Manuf. Technol. 105(5–6), 1983–2000 (2019). https://doi.org/10.1007/s00170-019-04380-z

    Article  Google Scholar 

  12. Sharma, D.; Mohanty, S.; Das, A.K.: Surface modification of titanium alloy using hBN powder mixed dielectric through micro-electric discharge machining. Surf. Coat. Technol. 381, 125157 (2020). https://doi.org/10.1016/j.surfcoat.2019.125157

    Article  Google Scholar 

  13. Chen, W.C.; Lin, H.M.; Uan, J.Y.: Formation and characterization of self-lubricated carbide layer on AA6082 Al–Mg–Si aluminum alloy by electrical discharge alloying process. Trans. Nonferrous Met. Soc. China Engl. Ed. 26(12), 3205–3218 (2016). https://doi.org/10.1016/S1003-6326(16)64453-9

    Article  Google Scholar 

  14. Mohanty, S., et al.: Surface alloying using tungsten disulphide powder mixed in dielectric in micro-EDM on Ti6Al4V. IOP Conf. Ser. Mater. Sci. Eng. 377(1), 012040 (2018). https://doi.org/10.1088/1757-899X/377/1/012040

    Article  Google Scholar 

  15. Mohanty, S.; Kumar, V.; Kumar Das, A.; Dixit, A.R.: Surface modification of Ti-alloy by micro-electrical discharge process using tungsten disulphide powder suspension. J. Manuf. Process. 37(October 2018), 28–41 (2019). https://doi.org/10.1016/j.jmapro.2018.11.007

    Article  Google Scholar 

  16. Arun, I.; Gangadhar, B.; Yuvaraj, C.; Kousalya, C.: Electrical discharge metal matrix composite coating on duplex stainless steel and its wear behavior under different environmental conditions. Mater. Res. Express 6(9), 0965c5 (2019). https://doi.org/10.1088/2053-1591/ab33bf

    Article  Google Scholar 

  17. Sharma, D.; Mohanty, S.; Das, A.K.: Surface modification of titanium alloy using hBN powder mixed dielectric through micro-electric discharge machining. Surf. Coat. Technol. 381(November 2019), 125157 (2020). https://doi.org/10.1016/j.surfcoat.2019.125157

    Article  Google Scholar 

  18. Talla, G.; Gangopadhyay, S.; Biswas, C.K.: Effect of impregnated powder materials on surface integrity aspects of Inconel 625 during electrical discharge machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232(7), 1259–1272 (2018). https://doi.org/10.1177/0954405416666904

    Article  Google Scholar 

  19. Chakraborty, S.; Kar, S.; Dey, V.; Ghosh, S.K.: Optimization and surface modification of Al-6351 alloy using SiC–Cu green compact electrode by electro discharge coating process. Surf. Rev. Lett. 24(1), 1–12 (2017). https://doi.org/10.1142/S0218625X1750007X

    Article  Google Scholar 

  20. Siddique, A.R.; Mohanty, S.; Das, A.K.: Micro-electrical discharge coating of titanium alloy using WS2 and brass P/M electrode. Mater. Manuf. Process. 34(15), 1761–1774 (2019). https://doi.org/10.1080/10426914.2019.1666988

    Article  Google Scholar 

  21. Jadam, T.; Sahu, S.K.; Datta, S.; Masanta, M.: Powder-mixed electro-discharge machining performance of Inconel 718: effect of concentration of multi-walled carbon nanotube added to the dielectric media. Sadhana Acad. Proc. Eng. Sci. 45(1), 1–16 (2020). https://doi.org/10.1007/s12046-020-01378-2

    Article  Google Scholar 

  22. Rouniyar, A.K.: Experimental investigation on recast layer and surface roughness on aluminum 6061 alloy during magnetic field assisted powder mixed electrical discharge machining. J. Mater. Eng. Perform. 29, 7981–7992 (2020). https://doi.org/10.1007/s11665-020-05244-4

    Article  Google Scholar 

  23. Sashank, S.; Dinesh Babu, P.; Marimuthu, P.: Experimental studies of laser borided low alloy steel and optimization of parameters using response surface methodology. Surf. Coat. Technol. 363(February), 255–264 (2019). https://doi.org/10.1016/j.surfcoat.2019.02.036

    Article  Google Scholar 

  24. Arun, I.; Yuvaraj, C.; Madhu, A.; Ramesh, T.: A comparison on microstructure and mechanical properties of electric discharge metal matrix nickel and silica composite coating on duplex stainless steel. J. Compos. Mater. 55(4), 507–520 (2021). https://doi.org/10.1177/0021998320953882

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the management of SASTRA Deemed to be University for allowing us to carry out the research work and Shanmugha Precision Forging, Thanjavur, India, for providing the EDM & infrastructure facility to conduct the experimental studies. The authors also thank Multifunctional Materials & Devices laboratory (Anusandhan Kendra II-107), SASTRA Deemed to be University, Thanjavur, India, for providing the testing facilities.

Author information

Authors and Affiliations

Authors

Contributions

R. Rajeshshyam involved in conceptualization, methodology, validation, and writing—original draft. R. Venkatraman participated in investigation, formal analysis, and supervision. S. Raghuraman involved in writing, review and editing, supervision, and visualisation.

Corresponding author

Correspondence to R. Rajeshshyam.

Ethics declarations

Conflict of interest

The author(s) declared that they have no conflict of interest concerning the present research work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajeshshyam, R., Venkatraman, R. & Raghuraman, S. Process Optimisation and Tribological Behaviour Studies on Surface Modified Al 6061-T6 Alloy Deposited with WS2 Solid Lubricant Layer Through Electrical Discharge Approach. Arab J Sci Eng 47, 8009–8030 (2022). https://doi.org/10.1007/s13369-021-05908-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05908-w

Keywords

Navigation