Skip to main content
Log in

Similar Constructing Method and Gaver-Stehfest Numerical Inversion Equation for Solving the Composite Reservoir Models Under Three Outer Boundary Conditions

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article studies composite reservoir models under infinite, constant pressure and closed outer boundary conditions, which considers the impact of wellbore storage, skin factor and effective wellbore radius. The dimensionless reservoir transient pressure inner and outer areas and dimensionless bottom-hole transient pressure of composite reservoir models under infinite, constant pressure and closed outer boundary conditions in the real space are obtained by using the similar constructing method and Gaver-Stehfest numerical inversion (SCM-GSNI). Then, we conduct numerical experiments, where the characteristic curves of bottom-hole transient pressure and its derivative are analyzed and the sensitivities of the relevant parameters are discussed. This research provides a new method for engineers to solve composite reservoir models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(B\) :

Crude volume coefficient (dimensionless)

\(C\) :

Wellbore storage coefficient (\({{{\text{m}}^{3} } \mathord{\left/ {\vphantom {{{\text{m}}^{3} } {{\text{MPa}}}}} \right. \kern-\nulldelimiterspace} {{\text{MPa}}}}\))

\(p_{w}\) :

Bottom-hole pressure (\({\text{MPa}}\))

\(r_{w}\) :

Effective wellbore radius (m)

\(p_{0}\) :

Initial reservoir pressure (MPa)

\(R\) :

The radius of outer boundary (m)

\(h\) :

The thickness of reservoir (m)

\(\eta _{i}\) :

Pressure transmitting coefficient (\(\mu {\text{m}}^{2} \cdot {\text{MPa}}\))

\(z\) :

Laplace space variable (dimensionless)

\(C_{t}\) :

Compressibility (\({\text{MPa}}^{{ - 1}}\))

\(k_{i}\) :

Permeability (\(\mu {\text{m}}^{2}\))

\(p_{i}\) :

Reservoir pressure in \(i\)th area (\({\text{MPa}}\))

\(r\) :

Wellbore radius (m)

\(S\) :

Skin factor (dimensionless)

\(\mu _{i}\) :

Viscosity (\({\text{MPa}} \cdot {\text{s}}\))

\(\phi _{i}\) :

Porosity (dimensionless)

\(t\) :

Time (h)

\(q\) :

Production rate (\({{{\text{m}}^{3} } \mathord{\left/ {\vphantom {{{\text{m}}^{3} } {\text{d}}}} \right. \kern-\nulldelimiterspace} {\text{d}}}\))

References

  1. Loucks, T.L.; Guerrero, E.T.: Pressure drop in a composite Reservoir [J]. Soc. Petrol. Eng. 11, 170–176 (1961)

    Article  Google Scholar 

  2. Brown, L.P.: Pressure transient behavior of the composite reservoir [J]. Soc. Petrol. Eng. 9, 22–26 (1985)

    Google Scholar 

  3. Davie Peon, A.O.S.T.R.A.; Harbir Chhina, A.E.C.: Transient pressure analysis of a linear composite reservoir [J]. Soc. Petrol. Eng. 5, 28–31 (1989)

    Google Scholar 

  4. Kuchuk, F.J.; Habashy, T.M.: Solution of pressure diffusion in radially composite reservoirs[J]. Transp. Porous Media 19(3), 199–232 (1995)

    Article  Google Scholar 

  5. Kuchuk, F.J.; Habashy, T.: Pressure Behavior of Laterally Composite Reservoirs[J]. SPE Form. Eval. 12(01), 47–56 (1997)

    Article  Google Scholar 

  6. Satman, A.: An analytical study of transient flow in stratified systems with fluid banks A. SPE 10264 (1997).

  7. Ramey, H.J.: Approximate solutions for unsteady liquid flow in composite reservoirs[J]. J. Can. Pet. Technol. 9(01), 32–37 (1970)

    Article  Google Scholar 

  8. Jordan, C.L.; Mattar, L.: Comparison of Pressure Transient Behaviour of Composite and Two-Layered Reservoirs[J]. J. Canadian Petrol. Technol., 41(02) (2000)

  9. Fu, H.Y.; Yin, H.J.; Lin, M., et al.: Pressure transient analysis of composite reservoir using the boundary element method[J]. J. Hydrodyn. (Ser. A) 21(6), 700–705 (2006)

    Google Scholar 

  10. Ren, J.J.; Guo, P.; Song, P.: Well Test Model of Horizontal Wells in Two-Zone Linear Composite Reservoirs and Typical Curves Analysis[J]. Chinese Quarterly Mech. 34(4), 532–540 (2013)

    Google Scholar 

  11. Ambastha, A.K.; Mcleroy, P.G.; Grader, A.S.: Effects of a partially communicating fault in a composite reservoir on transient pressure testing[J]. SPE Form. Eval. 4(02), 210–218 (1989)

    Article  Google Scholar 

  12. Zhang, L.H.; Guo, J.J.; Liu, Q.G., et al.: A new test model for a two-zone linear composite reservoir with varied thicknesses [J]. J. Hydrodyn. (Ser. B) 22(06), 804–809 (2010)

    Article  Google Scholar 

  13. Razminia, K.; Razminia, A.; Hashemi, A.: Fractional-calculus-based formulation of the fractured wells in fractal radial composite reservoirs[J]. Environ. Earth Sci. 75(22), 1436 (2016)

    Article  Google Scholar 

  14. Hu, Y.P.; Zhang, X.L.; Cheng, Z.Y., et al.: A novel radial-composite model of pressure transient analysis for multistage fracturing horizontal wells with stimulated reservoir volume[J]. Geofluids 2021(2), 1–14 (2021)

    Google Scholar 

  15. Li, S.C.: The similarity structuring method of boundary value problems of the composite differential equations (in Chinese) [J]. J. Xihua Univ. (Natural Science Edition) 32(4), 27–31 (2013)

    Google Scholar 

  16. Dong, X.X.; Liu, Z.B.; Li, S.C.: Similar constructing method for solving nonlinear spherical seepage model with quadratic pressure gradient of three-region composite fractal reservoir[J]. Comput. Appl. Math., 38(2) (2019).

  17. Dong, X.X.; Li, S.C.; Gui, D.D., et al.: A study on solving the seepage flow model of three-area composite reservoir[J]. Appl. Mech. Mater. 670–671, 599–603 (2014)

    Article  Google Scholar 

  18. Dong, X.X.; Liu, Z.B.; Li, S.C.: Similar constructing method for solving non-homogeneous mixed boundary value problem of n-interval composite ode and its application[J]. Math. Methods Appl. Sci. 42(5), 1702–1723 (2019)

    Article  MathSciNet  Google Scholar 

  19. Li, S.C.; Zhang, D.; Zheng, P.S.; Gui, Q.M.: Similar structure of solution for triple media shale gas reservoir [J]. J. Petrol. Sci. Eng. 152, 67–80 (2017)

    Article  Google Scholar 

  20. Ezuldce, O.; Lgbokoyi, A.: Horizontal well pressure transient analysis in anisotropic composite reservoirs-A three dimensional semi-analytical approach [J]. J. Petrol. Sci. Eng. 96(5), 120–139 (2012)

    Google Scholar 

  21. Li, Y.B.; Qiang, E.A.: Research on the well test model of non-Newtonian and Newton composite reservoir [J]. J. Liaoning Chem. Ind. 42(6), 676–679 (2013)

    Google Scholar 

  22. Escobar, F.H.; Martinez, J.A.; Bonilla, L.F.: Numerical solution for a radial composite reservoir model with a non-Newtonian/Newtonian interface [J]. ARPN J. Eng. Appl. Sci. 7(8), 957–962 (2012)

    Google Scholar 

  23. Ashkan, J.G.; Jelmert, T.A.: A multi-layer commingled composite reservoir model for thermal well test analysis [J]. Int. J. Eng. Trends Technol. 18(6), 283–292 (2014)

    Article  Google Scholar 

  24. Ashkan, J.G.; Jelmert, T.A.: A new composite reservoir model for thermal well test analysis [J]. Int. J. Eng. Trends Technol. 18(8), 357–366 (2014)

    Article  Google Scholar 

  25. Ashkan, J.G.; Jelmert, T.A.: A Multi-Layer Multi-Region Well Test Model[J]. Int. J. Eng. Trends Technol. 19(3), 154–158 (2015)

    Article  Google Scholar 

  26. Sun, Z.X.; Yang, X.G.; Jin, Y.X., et al.: Analysis of pressure and production transient characteristics of composite reservoir with moving boundary[J]. Energies 13(1), 1–18 (2019)

    Article  Google Scholar 

  27. Liu, S.S.; Liu, S.D.: Special Function [M]. China Meteorological Press, Beijing (2002)

    Google Scholar 

  28. Zhang, H.R.; Hao, B.X.: Higher Algebra, 4th edn. Higher Education Press, Beijing (1981)

    Google Scholar 

  29. Stehfest, H.: Remark on algorithm 368: numerical inversion of laplace transforms. Commun. ACM 13(10), 624 (1970)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxu Dong.

Additional information

Project supported by Talent introduction project of Xihua University (Z202068) and the Major Program of Sichuan Province (No. 20QYCX0030).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Li, S., Liu, Z. et al. Similar Constructing Method and Gaver-Stehfest Numerical Inversion Equation for Solving the Composite Reservoir Models Under Three Outer Boundary Conditions. Arab J Sci Eng 47, 11239–11253 (2022). https://doi.org/10.1007/s13369-021-05896-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05896-x

Keywords

Navigation