Skip to main content
Log in

Preparation and Performance Evaluation of Butylated Graphene Oxide (C4H9-GO) Incorporated Modified Cement

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Modified graphene oxide (GO) has widened the spectrum of its applications in the preparation of highly effective composite materials. This paper reports the effect and mechanism of modified butylated GO (C4H9-GO) on the mechanical properties of reinforced cement-based composites. Experimental findings showed that compared with the pristine GO/cement composite, the fluidity of 0.03 wt% C4H9-GO/cement was slightly improved while its bending strength and compressive strength were increased by 10.50% and 17.00%, respectively, after curing for 28 days. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, mercury intrusion porosimetry, and surface area analysis revealed that C4H9-GO can effectively increase the degree of hydration, promote the formation of C–S–H bonds, Aft and Afm crystals (two kinds of calcium sulfoaluminate hydration), and inhibit the generation and development of cracks and pores thus increasing the bending and compressive strengths of the C4H9-GO/cement composite. Based on the experimental and characterization findings, a suitable mechanism for the enhancement in mechanical properties of C4H9-GO/cement was proposed. This study provides useful findings for the simplified and cost-effective preparation of C4H9-GO/cement for applications in highway and bridge construction industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. He, L.; Collins, F.; Zhu, J.: Mechanical properties and microstructure of a graphene oxide-cement composite. Cem. Concr. Compos. 50, 140–147 (2015)

    Google Scholar 

  2. Du, H.; Gao, H.J.; Pang, S.D.: Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet. Cem. Concr. Res. 83, 114–123 (2016)

    Article  Google Scholar 

  3. Sohail, M.G.; Alnahhal, W.; Taha, A.; Abdelaal, K.: Sustainable alternative aggregates: characterization and influence on mechanical behavior of basalt fiber reinforced concrete. Constr. Build. Mater. 255(20), 119365 (2020)

    Article  Google Scholar 

  4. Kwon, S.; Nishiwaki, T.; Kikuta, T.; Mihashi, H.: Development of ultra-high-performance hybrid fiber- reinforced cement-based composites. ACI Mater. J. 111(3), 309–318 (2014)

    Google Scholar 

  5. Xu, S.; Liu, J.; Li, Q.: Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste. Constr. Build. Mater. 76(1), 16–23 (2015)

    Article  Google Scholar 

  6. Thomas, J.J.; Jennings, H.M.; Chen, J.J.: Influence of Nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. J. Phys. Chem. C 113(11), 4327–4334 (2009)

    Article  Google Scholar 

  7. Du, H.; Du, S.; Liu, X.: Durability performances of concrete with nano-silica. Constr. Build. Mater. 73(30), 705–712 (2014)

    Article  Google Scholar 

  8. Nazari, A.; Riahi, S.: TiO2 nanoparticles’ effects on properties of concrete using ground granulated blast furnace slag as binder. Sci. China 54(11), 3109–3118 (2011)

    Article  Google Scholar 

  9. Ren, J.; Lai, Y.; Gao, J.: Exploring the influence of SiO2 and TiO2 nanoparticles on the mechanical properties of concrete. Constr. Build. Mater. 175(30), 277–285 (2018)

    Article  Google Scholar 

  10. Mohamed, M.; Saleh, A.; Mohammad, A.: Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr. Build. Mater. 25(1), 145–149 (2011)

    Article  Google Scholar 

  11. Lee, C.; Wei, X.; Kysar, J.W.; Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008)

    Article  Google Scholar 

  12. Li, X.; Wang, L.; Liu, Y.; Li, W.; Wen, H.D.: Dispersion of graphene oxide agglomerates in cement paste and its effects on electrical resistivity and flexural strength. Cem. Concr. Compos. 92, 145–154 (2018)

    Article  Google Scholar 

  13. Shamsaei, E.; De Souza, F.B.; Yao, X.; Benhelal, E.; Akbari, A.; Duan, W.: Graphene-based nanosheets for stronger and more durable concrete: a review. Constr. Build. Mater. 183(20), 642–660 (2018)

    Article  Google Scholar 

  14. Chuah, S.; Pan, Z.; Sanjayan, J.G.; Wang, C.M.; Duan, W.H.: Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater. 73(30), 113–124 (2014)

    Article  Google Scholar 

  15. Kang, S.S.; Lee, H.; Chung, W.: Experimental study on mechanical strength of GO-cement composites. Constr. Build. Mater. 131(30), 303–308 (2017)

    Article  Google Scholar 

  16. Pan, Z.; He, L.; Qiu, L.; Korayem, A.H.; Li, G.; Zhu, J.W.; Collins, F.; Li, D.; Duan, W.H.; Wang, M.C.: Mechanical properties and microstructure of a graphene oxide–cement composite. Cem. Concr. Compos. 58, 140–147 (2015)

    Article  Google Scholar 

  17. Peng, H.; Ge, Y.; Cai, C.S.; Zhang, Y.; Liu, Z.: Mechanical properties and microstructure of graphene oxide cement-based composites. Constr. Build. Mater. 194(10), 102–109 (2019)

    Article  Google Scholar 

  18. Musso, S.; Tulliani, J.-M.; Ferro, G.; Tagliaferro, A.: Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos. Sci. Technol. 69(11–12), 1985–1990 (2009). https://doi.org/10.1016/j.compscitech.2009.05.002

    Article  Google Scholar 

  19. Cao, K.; Siepermann, C.P.; Ming, Y.; Waas, A.M.; Kotov, N.A.; Thouless, M.; Arruda, E.M.: Reactive aramid nanostructures as high-performance polymeric building blocks for advanced composites. Adv. Funct. Mater. 23(16), 2072–2080 (2013)

    Article  Google Scholar 

  20. Li, H.; Xu, C.; Dong, B.; Chen, Q.; Yang, X.: Differences between their influences of TEA and TEA·HCl on the properties of cement paste. Constr. Build. Mater. 239(10), 117797 (2020)

    Article  Google Scholar 

  21. Geng, Y.L.; Pei, M.W.; Zhao, X.: Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon 43(6), 1239–1245 (2005)

    Article  Google Scholar 

  22. Subhan, S.; Muhammad, Y.; Ahmad, B.; Tong, Z.; Subhan, F.; Sahibazda, M.: Fabrication of MnO2 NPs incorporated UiO-66 for the green and efficient oxidative desulfurization and denitrogenation of fuel oils. J. Environ. Chem. Eng. 9(3), 105179 (2021)

    Article  Google Scholar 

  23. El-Aleem, S.A.; Gawwad, H.A.; Ouda, A.S.: Preparation and characterization of one-part non-Portland cement. Ceram. Int. 42(1), 220–228 (2016)

    Article  Google Scholar 

  24. Duan, S.; Muhammad, Y.; Li, J.; Maria, S.; Yang, H.: Enhancing effect of microalgae biodiesel incorporation on the performance of crumb Rubber/SBS modified asphalt. J. Clean. Prod. 237, 117725 (2019)

    Article  Google Scholar 

  25. Hui, R.; Guan, C.; Hou, D.: Study on IR characteristics of carboxylic acid and their salts. J. Anshan Teach. Coll. 01, 95–98 (2001)

    Google Scholar 

  26. Shen, J.; Na, L.; Min, S.; Hu, Y.; Ye, M.: Covalent synthesis of organophilic chemically functionalized graphene sheets. J. Colloid Interface Sci. 348(2), 377–383 (2010)

    Article  Google Scholar 

  27. Thompson, B.C.; Murray, E.; Wallace, G.G.: Graphite oxide to grapheme. Biomaterials to Bionics. Adv. Mater. 27(46), 7563–7582 (2016)

    Article  Google Scholar 

  28. Herrera-Alonso, M.; Abdala, A.A.; McAllister, M.J.; Aksay, I.A.; Prud’homme, R.K.: Intercalation and stitching of graphite oxide with diaminoalkanes. Langmuir 23(21), 10644–10649 (2007)

    Article  Google Scholar 

  29. Han, Y.; Yun, L.: Preparation and characterization of graphite oxide/polypyrrole composites. Carbon 45(12), 2394–2399 (2007)

    Article  Google Scholar 

  30. Lv, S.; Ma, Y.; Qiu, C.; Sun, T.; Liu, J.; Zhou, Q.: Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr. Build. Mater. 49, 121–127 (2013)

    Article  Google Scholar 

  31. Shang, Y.; Zhang, D.; Yang, C.; Liu, Y.; Liu, Y.: Effect of graphene oxide on the rheological properties of cement pastes. Constr. Build. Mater. 96, 20–28 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.181

    Article  Google Scholar 

  32. Yu, P.; Kirkpatrick, R.J.; Poe, B.; Mcmillan, P.F.; Cong, X.: Structure of calcium silicate hydrate (C-S-H): near-, mid-, and far-infrared spectroscopy. J. Am. Ceram. Soc. 82(3), 742–748 (1999)

    Article  Google Scholar 

  33. Lien, C.; Yen, M.; Lin, Y.; Chen, M.; Lin, J.: FTIR study of adsorption and surface reactions of N(CH3)(3) on TiO2. J. Phys. Chem. B 109(21), 10962–10968 (2005)

    Article  Google Scholar 

  34. Jung, D.H.; Ko, Y.K.; Jung, H.T.: Aggregation behavior of chemically attached poly(ethylene glycol) to single-walled carbon nanotubes (SWNTs) ropes. Mater. Sci. Eng. C 24(1), 117–121 (2004)

    Article  Google Scholar 

  35. Hu, P.; Zhao, Z.; Sun, X.; Muhammad, Y.; Li, J.; Chen, S.; Pang, C.; Liao, T.; Zhao, Z.: Construction of crystal defect sites in N-coordinated UiO-66 via mechanochemical in-situ N-doping strategy for highly selective adsorption of cationic dyes. Chem. Eng. J. 356, 329–340 (2019)

    Article  Google Scholar 

  36. Pan, Z.; He, L.; Collins, F.; Zhu, J.; Qiu, L.: Mechanical properties and microstructure of a graphene oxide-cement composite. Cem. Concr. Compos. 50, 140–147 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Guangxi Key Research and Development Project of 409 China (Guike AB17292061), Guangxi Science and Technology Department (2017GXNSFBA198185), and the National Natural Science Foundation of China (51768007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Zhao, Z., Muhammad, Y. et al. Preparation and Performance Evaluation of Butylated Graphene Oxide (C4H9-GO) Incorporated Modified Cement. Arab J Sci Eng 47, 3991–4002 (2022). https://doi.org/10.1007/s13369-021-05847-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05847-6

Keywords

Navigation