Skip to main content
Log in

A Hybrid Reconfigurability Structure for a Novel 5G Monopole Antenna for Future Mobile Communications at 28/38 GHz

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study proposes a novel reconfigurable antenna for the millimeter-wave frequency spectrum. The proposed hybrid reconfigurable antenna is designed to reconfigure antenna parameters in compliance with wireless application specifications, such as frequency and radiation patterns. PIN Diodes as a switch are used to monitor the reconfiguration features i.e. adjusting the frequency response and radiation pattern of the antenna. For the desired goal, antenna is incorporated with three switches (S1, S2 & S3). The main beam of the antenna is guided by S1 and S2 which connects parasitic stubs H1 and H2 and the frequency is controlled by S3 between 28 and 38 GHz which connects patch P1 with P2. Proposed work is validated for 28 GHz and 38 GHz operational bands. When S3 is active (at ON state), the proposed antenna operates at 28 GHz resonant frequency with a reflection coefficient of − 32.3 dB and when S3 is in-active (at OFF state), it results in 38 GHz resonant frequency with a reflection coefficient of − 42.1 dB. RTDuroid5880 with \(\varepsilon _{{\text{r}}} = 2.33\), \(\tan \delta = 0.0009\) and thickness (h) of \(0.506\,{\text{mm}}\) and is excited through an inset feed. HFSS software is used for the simulation purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ericsson Technology Review, Designing for the future: the 5G NR physical layer. https://www.ericsson.com/en/ericsson-technology-review/archive/2017/designing-for-the-future-the-5g-nr-physical-layer

  2. Hu, G.H.; Feng, J.; Zhang, S.; Cung, G.; Bernhard, J.T.: Directional reconfigurable antennas on laptop computers: simulation, measurement and evaluation of candidate integration positions. IEEE Trans. Antennas Propag. 52(12), 3220–3227 (2004)

    Article  Google Scholar 

  3. Stöhr, A., et al.: Millimeter-wave photonic components for broadband wireless systems. IEEE Trans. Microw. Theory Tech. 58(11), 3071–3082 (2010). https://doi.org/10.1109/TMTT.2010.2077470

    Article  Google Scholar 

  4. Iqbal, N., et al.: Frequency and bandwidth dependence of millimeter wave ultra-wide-band channels. In: 2017 11th European Conference on Antennas and Propagation (EUCAP), Paris, pp. 141–145. (2017). https://doi.org/10.23919/EuCAP.2017.7928850.

  5. Rahman, S.; Robertson, D.: Time-frequency analysis of millimeter-wave radar micro-Doppler data from small UAVs. In: 2017 Sensor Signal Processing for Defence Conference (SSPD), London. pp. 1–5. (2017). https://doi.org/10.1109/SSPD.2017.8233269

  6. Rappaport, T.S., et al.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013). https://doi.org/10.1109/ACCESS.2013.2260813

    Article  Google Scholar 

  7. Ismail, M.F.; Rahim, M.K.A.; Majid, H.A.: The investigation of PIN diode switch on reconfigurable antenna. In: 2011 IEEE International RF & Micro-wave Conference, Seremban, Negeri Sembilan. (2011). pp. 234–237.

  8. Wang, L.; Yu, J.; Li, Y.: Microwave photonic antenna for fiber radio application. In: 2018 IEEE 3rd Optoelectronics Global Conference (OGC), Shenzhen. pp. 122–125. (2018). https://doi.org/10.1109/OGC.2018.8529927

  9. Kim, J., et al.: MIMO-supporting radio-over-fiber system and its application in mmWave-based indoor 5G mobile network. J. Lightw. Technol. 38(1), 101–111 (2020). https://doi.org/10.1109/JLT.2019.2931318

    Article  Google Scholar 

  10. Douville, R.; Roscoe, D.; Cuhaci, M.; Stubbs, M.: Antennas for broadband microwave/mm-wave communication systems. In: Luise, M.; Pupolin, S. (Eds.) Broadband Wireless Communications. Springer, London (1998). https://doi.org/10.1007/978-1-4471-1570-0_14

    Chapter  Google Scholar 

  11. Alipour, S.; Parvaresh, F.; Ghajari, H.; Donald, F.K.: Propagation characteristics for a 60 GHz wireless body area network (WBAN). In: 2010—MILCOM 2010 Military Communications Conference, San Jose, CA. pp. 719–723. (2010). https://doi.org/10.1109/MILCOM.2010.5680295

  12. Guo, Y.J.; Qin, P.Y.: Reconfigurable antennas for wireless communications. In: Chen, Z.; Liu, D.; Nakano, H.; Qing, X.; Zwick, T. (Eds.) Handbook of Antenna Technologies. Springer, Singapore (2016). https://doi.org/10.1007/978-981-4560-44-3_119

    Chapter  Google Scholar 

  13. Qin, P.Y.; Guo, Y.J.; Liang, C.H.: Effect of antenna polarization diversity on MIMO system capacity. IEEE Antennas Wirel. Propag. Lett. 9, 1092–1095 (2010)

    Article  Google Scholar 

  14. Kamran Shereen, M.; Khattak, M.I.; Witjaksono, G.: A brief review of frequency, radiation pattern, polarization, and compound reconfigurable antennas for 5G applications. J. Comput. Electron. 18, 1065–1102 (2019). https://doi.org/10.1007/s10825-019-01336-0

    Article  Google Scholar 

  15. Li, X.; Tsui, C.; Ki, W.: UHF energy harvesting system using reconfigurable rectifier for wireless sensor network. In: 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon. pp. 93–96. (2015). https://doi.org/10.1109/ISCAS.2015.7168578

  16. Shereen, M.K.; Khattak, M.I.; Al-Hasan, M.: A frequency and radiation pattern combo-reconfigurable novel antenna for 5G applications and beyond. Electronics 9, 1372 (2020)

    Article  Google Scholar 

  17. Elsheakh, D.N.: Frequency reconfigurable and radiation pattern steering of monopole antenna based on graphene pads. In: 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Granada, Spain. pp. 436–440 (2019).

  18. Shereen, M.K.; Khattak, M.I.; Al-Hasan, M.: A hybrid reconfigurability structure for a novel 5G monopole antenna for future mobile communication. Frequenz (2020). https://doi.org/10.1515/freq-2020-0031

    Article  Google Scholar 

  19. Skaik, T.; AbuJalambo, M.: Design of microstrip circular UWB antenna with reconfigurable frequency and radiation pattern. In: 2018 International Conference on Promising Electronic Technologies (ICPET), Deir El-Balah. pp. 52–57 (2018)

  20. Fang, P.; Wang, K.; Wolfmüller, M.; Eibert, T.F.: Radiation pattern reconfigurable antenna for MIMO systems with antenna tuning switches. In: 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA. pp. 503–504 (2018)

  21. Kimouche, H.; Mansoul, A.: A compact reconfigurable single/dual band antenna for wireless communications. In: Proceedings of the 5th European Conference on Antennas and Propagation, pp. 393–396 (2011).

  22. Abutarboush, H.F.; Shamim, A.: A reconfigurable inkjet-printed antenna on paper substrate for wireless applications. IEEE Antennas Wirel. Propag. Lett. 17(9), 1648–1651 (2018)

    Article  Google Scholar 

  23. Rao, Q.; Denidni, T.A.; Sebak, A.R.; Johnston, R.H.: Compact independent dual-band hybrid resonator antenna with multifunctional beams. IEEE Antennas Wirel. Propag. Lett. 5(1), 239–242 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kamran Shereen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shereen, M.K., Khattak, M.I. A Hybrid Reconfigurability Structure for a Novel 5G Monopole Antenna for Future Mobile Communications at 28/38 GHz. Arab J Sci Eng 47, 2745–2753 (2022). https://doi.org/10.1007/s13369-021-05845-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05845-8

Keywords

Navigation