Skip to main content
Log in

Determining Lightning Vulnerability of Corner Points of Tall Buildings by Evaluating Their Relevant Risky Regions

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Since the lightning escape from the protection system could cause severe damages to the structures and expensive equipment, lightning protection systems should be designed in such a way that the probability of direct lightning strikes can be minimized. The aim of this paper is to model and visualize the weaknesses of tall building's air termination systems against direct lightning strikes. Hence, in this paper, a numerical method is developed based on the combination of artificial bee colony algorithm, leader progression model and charge simulation method. In the proposed approach, three-dimensional modeling of lightning performance is conducted in the problem space and such features of an intelligent meta-heuristic algorithm are incorporated into the problem that let the solution space to be searched intelligently. Therefore, the lightning vulnerability of the corner points of the tall buildings is estimated and the riskiest lightning regions corresponding to each vulnerable point are determined on the simulation-starting surface on buildings. In comparison with the time-consuming conventional method, the proposed approach is also efficient in decreasing the time required to identify protection system weaknesses. A sample real structure including three tall adjacent buildings located in Kuala Lumpur is analyzed as the problem case study and the obtained results are compared with that of previous reported methods. The simulation results verify the potential of the introduced method and depict that optimization intelligent algorithms are able to achieve high-quality solutions in the face of this problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Young, F.: Shielding of transmission lines. IEEE Trans. PAS S82, 132–154 (1963)

    Google Scholar 

  2. Armstrong, H.; Whitehead, E.R.: Field and analytical studies of transmission line shielding. IEEE Trans. Power Appar. Syst. 1, 270–281 (1968)

    Article  Google Scholar 

  3. Brown, G.W.; Whitehead, E.R.: Field and analytical studies of transmission line shielding: Part. IEEE Trans. Power Appar. Syst. 5, 617–626 (1969)

    Article  Google Scholar 

  4. Wagner, C.: The relation between stroke current and the velocity or the return stroke. IEEE Trans. Power Appar. Syst. 82(68), 609–617 (1963)

    Article  Google Scholar 

  5. Eriksson, A.: An improved electrogeometric model for transmission line shielding analysis. IEEE Trans. Power Deliv. 2(3), 871–886 (1987)

    Article  Google Scholar 

  6. Saba, M., et al.: Lightning attachment process to common buildings. Geophys. Res. Lett. 44(9), 4368–4375 (2017)

    Article  Google Scholar 

  7. Eriksson, A.: The incidence of lightning strikes to power lines. IEEE Trans. Power Deliv. 2(3), 859–870 (1987)

    Article  Google Scholar 

  8. Brooks, W., et al.: Investigation of lightning attachment risks to small structures associated with the electrogeometric model (EGM). IEEE Trans. Plasma Sci. 48(6), 2163–2174 (2020)

    Article  Google Scholar 

  9. Dalessandro, F.; Gumley, J.: A “Collection Volume Method” for the placement of air terminals for the protection of structures against lightning. J Electrost 50(4), 279–302 (2001)

    Article  Google Scholar 

  10. Darveniza, M.: A modification to the rolling sphere method for positioning air terminals for lightning protection of buildings. In: ICLP 2000. University of Papras (2000)

  11. Horvath, T.: Rolling sphere theory and application. In: Proceeding of 25th International Conference on Lightning Protection, Rhodes, Greece, September 18–22 . (2000)

  12. Szedenik, N.: Rolling sphere–method or theory? J. Electrostat. 51, 345–350 (2001)

    Article  Google Scholar 

  13. Durham, R.A.; Durham, M.O.; Gillaspie, T.W.: Lightning protection at petrochemical facilities-part 1 history and background science. InL: 2019 IEEE Petroleum and Chemical Industry Committee Conference (PCIC).. IEEE 2019

  14. Srinivasan, V., et al.: Three-Dimensional Implementation of Modified Rolling Sphere Method for Lightning Protection of Giant Medieval Chola Monument in South India. In: 2019 14th Conference on Industrial and Information Systems (ICIIS). 2019. IEEE.

  15. Dellera, L.; Garbagnati, E.: Lightning stroke simulation by means of the leader progression model. I. Description of the model and evaluation of exposure of free-standing structures. IEEE Trans. Power Deliv. 5(4), 2009–2022 (1990)

    Article  Google Scholar 

  16. Dellera, L.; Garbagnati, E.: Lightning stroke simulation by means of the leader progression model. II. Exposure and shielding failure evaluation of overhead lines with assessment of application graphs. IEEE Trans. Power Deliv. 5(4), 2023–2029 (1990)

    Article  Google Scholar 

  17. Silveira, F.H.; Visacro, S.: Lightning performance of transmission lines: impact of current waveform and front-time on backflashover occurrence. IEEE Trans. Power Deliv. 34(6), 2145–2151 (2019)

    Article  Google Scholar 

  18. Seminario-García, A.; González-Morán, C.; Arboleya, P.: Stepped leader progression and speed evolution in a thunderstorm: theoretical model. Energies 12(13), 2507 (2019)

    Article  Google Scholar 

  19. Yahyaabadi, M.; Aslani, F.; Vahidi, B.: A novel hybrid method based on teaching–learning algorithm and leader progression model for evaluating the lightning performance of launch sites and experimental tests. Electr. Eng. 101(2), 619–633 (2019)

    Article  Google Scholar 

  20. Yahyaabadi, M.; Aslani, F.: Calculating the number of direct lightning strokes to tall structures using leader progression model and particle swarm optimisation (PSO) algorithm. HKIE Trans. 25(3), 199–207 (2018)

    Article  Google Scholar 

  21. He, J., et al.: Numeral analysis model for shielding failure of transmission line under lightning stroke. IEEE Trans. Power Deliv. 20(2), 815–822 (2005)

    Article  Google Scholar 

  22. Wei, B.; Fu, Z.; Yuan, H.: Analysis of lightning shielding failure for 500-kV overhead transmission lines based on an improved leader progression model. IEEE Trans. Power Deliv. 24(3), 1433–1440 (2009)

    Article  Google Scholar 

  23. Tavakoli, M.R.B.; Vahidi, B.: Transmission-lines shielding failure-rate calculation by means of 3-D leader progression models. IEEE Trans. Power Deliv. 26(2), 507–516 (2010)

    Article  Google Scholar 

  24. Aslani, F.; Yahyaabadi, M.; Vahidi, B.: Analyzes of Launch sites lightning protection systems by 3D numerical modelling and experimental tests. IET Sci .Meas. Technol. 12(8), 958–964 (2018)

    Article  Google Scholar 

  25. Vahidi, B., et al.: Leader progression analysis model for shielding failure computation by using the charge simulation method. IEEE Trans. Power Deliv. 23(4), 2201–2206 (2008)

    Article  Google Scholar 

  26. Yahyaabadi, M.; Sadoughi, A.; Karimi, B.: Evaluation of parameters influencing the lightning performance of communication towers by numerical modeling and experimental tests. J. Electrostat. 77, 35–43 (2015)

    Article  Google Scholar 

  27. Yahyaabadi, M.; Vahidi, B.: Estimation of shielding failure number of transmission lines for different trace configurations using leader progression analysis. Int. J. Electr. Power Energy Syst. 38(1), 27–32 (2012)

    Article  Google Scholar 

  28. Yahyaabadi, M.; Vahidi, B.; Tavakoli, M.B.: Estimation of shielding failure number of different configurations of double-circuit transmission lines using leader progression analysis model. Electr. Eng. 92(2), 79–85 (2010)

    Article  Google Scholar 

  29. Aslani, F.; Yahyaabadi, M.; Vahidi, B.: An intelligent-reduced time method to analyze lightning performance of communication towers and validation using experimental tests. Electr. Power Syst. Res. 173, 143–152 (2019)

    Article  Google Scholar 

  30. Aslani, F.; Yahyaabadi, M.; Vahidi, B.: A new-intelligent method for evaluating the lightning protection system performance of complex and asymmetric structures. Electr. Power Syst. Res. 190, 106843 (2021)

    Article  Google Scholar 

  31. Malik, N.H.: A review of the charge simulation method and its applications. IEEE Trans. Electr. Insul. 24(1), 3–20 (1989)

    Article  Google Scholar 

  32. Yializis, A.; Kuffel, E.; Alexander, P.: An optimized charge simulation method for the calculation of high voltage fields. IEEE Trans. Power Appar. Syst. 6, 2434–2440 (1978)

    Article  Google Scholar 

  33. Rabah, D.; Abdelghani, C.; Abdelchafik, H.: Efficiency of some optimisation approaches with the charge simulation method for calculating the electric field under extra high voltage power lines. IET Gener. Transm. Distrib. 11(17), 4167–4174 (2017)

    Article  Google Scholar 

  34. Horváth, T.: Computation of lightning protection. In: Cargese lectures in physics, London, UK, pp 33–50 (1991)

  35. Golde, R.: Lightning and tall structures. In: Proceedings of the Institution of Electrical Engineers. IET (1978)

  36. Cooray, V.; Rakov, V.; Theethayi, N.: The lightning striking distance—revisited. J. Electrostat. 65(5–6), 296–306 (2007)

    Article  Google Scholar 

  37. Becerra, M.; Cooray, V.: A simplified physical model to determine the lightning upward connecting leader inception. IEEE Trans. Power Deliv. 21(2), 897–908 (2006)

    Article  Google Scholar 

  38. Kumar, U.; Bokka, P.K.; Padhi, J.: A macroscopic inception criterion for the upward leaders of natural lightning. IEEE Trans. Power Deliv. 20(2), 904–911 (2005)

    Article  Google Scholar 

  39. Golde, R.H.: Lightning Protection, p. 11–33. Edward Arnold Publishers Ltd., London (1973)

    Google Scholar 

  40. STROKES ETDL: Modeling of transmission line exposure to direct ligbtning strokes. IEEE Trans. Power Deliv. 5(4), 1983 (1990)

    Article  Google Scholar 

  41. Karaboga, D., An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes university, engineering faculty, computer engineering department (2005)

  42. Rameshkumar, K.; Indragandhi, V.: Real Time Implementation and Analysis of Enhanced Artificial Bee Colony Algorithm Optimized PI Control algorithm for Single Phase Shunt Active Power Filter. J. Electr. Eng. Technol. 15, 1541 (2020)

    Article  Google Scholar 

  43. Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  44. Karaboga, D.; Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214(1), 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  45. Karaboga, D.; Ozturk, C.: A novel clustering approach: artificial bee colony (ABC) algorithm. Appl. Soft Comput. 11(1), 652–657 (2011)

    Article  Google Scholar 

  46. Becerra, M.; Cooray, V.; Hartono, Z.: Identification of lightning vulnerability points on complex grounded structures. J. Electrostat. 65(9), 562–570 (2007)

    Article  Google Scholar 

  47. Hartono, Z.A.; I. Robiah.: A method of identifying the lightning strike location on a structure. In: Proc. Int. Conf. on Electromagnetic Compatibility. (1995).

  48. Becerra, M.: On the Simulation of the Lightning Strikes to Complex Grounded Structures. línea] Available: https://www.researchgate.net/publication/268348558, (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Aslani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahyaabadi, M., Aslani, F., Vahidi, B. et al. Determining Lightning Vulnerability of Corner Points of Tall Buildings by Evaluating Their Relevant Risky Regions. Arab J Sci Eng 47, 2825–2834 (2022). https://doi.org/10.1007/s13369-021-05817-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05817-y

Keywords

Navigation