Skip to main content

Advertisement

Log in

Hydrophilic Carbon Cloth (Chemically Activated) as an Electrode Material For Energy Storage Device

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, hydrophobic carbon cloth (HCC) was chemically activated by the facile oxidation method using a mixture of concentrated acid (H2SO4:HNO3) followed by ammonium hydroxide (NH4OH) treatment to make it a suitable electrode/current collector for energy storage device. It was found that the treated carbon cloth (TCC) turned hydrophilic by this treatment and a decrease in contact angle from 145.46 ± 0.28° to 72.93 ± 1.32° was observed. Fourier transform infrared spectroscopy (FTIR) confirmed the functionalization of TCC with C = O, O–H functional group. Brunauer–Emmett–Teller (BET) results showed the enhancement of surface area in TCC by 18 times. Field emission gun-scanning electron microscopy (FEG-SEM) and scanning probe microscope (SPM) analysis confirmed surface modification in TCC. The electrochemical properties of TCC were investigated using cyclic voltammetry (CV), constant current charge–discharge (CCCD) and electrochemical impedance spectroscopy (EIS). The areal capacitance of the TCC measured by CCCD was 908 mF cm−2 at 1.5 mA cm−2 in 1 M H2SO4 aqueous electrolyte. Specific capacitance retention rate was 95.02% after 5000 cycles at current density of 10 mA cm−2, and EIS study of TCC showed the charge-transfer resistance of 0.34 Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Murugan, R.; Ravi, G.; Vijayaprasath, G.; Rajendran, S.; Thaiyan, M.; Nallappan, M.; Gopalan, M.; Hayakawa, Y.: Ni-CeO2 spherical nanostructures for magnetic and electrochemical supercapacitor applications. Phys. Chem. Chem. Phys. 19, 4396–4404 (2017). https://doi.org/10.1039/c6cp08281e

    Article  Google Scholar 

  2. Iro, Z.S.; Subramani, C.; Dash, S.S.: A brief review on electrode materials for supercapacitor. Int J Electrochem. Sci. 11, 10628–10643 (2016). https://doi.org/10.20964/2016.12.50

    Article  Google Scholar 

  3. Mevada, C.; Mukhopadhyay, M.: Limitations and recent advances in high mass loading asymmetric supercapacitors based on pseudocapacitive materials. Ind. Eng. Chem. Res. (2021). https://doi.org/10.1021/acs.iecr.0c04811

    Article  Google Scholar 

  4. Ramachandran, R.; Chen, S.M.; Gnana kumar, G.: An overview of electrochemical energy storage devices of various electrodes and morphological studies of supercapacitors. Int. J. Electrochem. Sci. 10, 10355–10388 (2015)

    Google Scholar 

  5. Wang, J.A.; Lu, Y.T.; Lin, S.C.; Wang, Y.S.; Ma, C.C.M.; Hu, C.C.: Designing a novel polymer electrolyte for improving the electrode/electrolyte interface in flexible all-solid-state electrical double-layer capacitors. ACS Appl. Mater. Interfaces. 10, 17871–17882 (2018). https://doi.org/10.1021/acsami.8b02046

    Article  Google Scholar 

  6. Chang, S.H.; Huang, B.Y.; Wan, T.H.; Chen, J.Z.; Chen, B.Y.: Surface modification of carbon cloth anodes for microbial fuel cells using atmospheric-pressure plasma jet processed reduced graphene oxides. RSC Adv. 7, 56433–56439 (2017). https://doi.org/10.1039/c7ra11914c

    Article  Google Scholar 

  7. Chen, K.; Xue, D.: Cu -based materials as high-performance electrodes toward electrochemical energy storage. Funct. Mater. Lett. 07, 1430001 (2014). https://doi.org/10.1142/s1793604714300011

    Article  Google Scholar 

  8. Moreno, H.A.; Hussain, S.; Amade, R.; Bertran, E.: Growth and functionalization of CNTs on stainless steel electrodes for supercapacitor applications. Mater. Res. Express. (2014). https://doi.org/10.1088/2053-1591/1/3/035050

    Article  Google Scholar 

  9. He, D.; Liu, G.; Pang, A.; Jiang, Y.; Suo, H.; Zhao, C.: A high-performance supercapacitor electrode based on tremella-like NiC2O4@NiO core/shell hierarchical nanostructures on nickel foam. Dalt. Trans. 46, 1857–1863 (2017). https://doi.org/10.1039/c6dt04500f

    Article  Google Scholar 

  10. Wei, J.; Wei, S.; Wang, G.; He, X.; Gao, B.; Zhao, C.: PPy modified titanium foam electrode with high performance for supercapacitor. Eur. Polym. J. 49, 3651–3656 (2013). https://doi.org/10.1016/j.eurpolymj.2013.08.001

    Article  Google Scholar 

  11. Suktha, P.; Chiochan, P.; Iamprasertkun, P.; Wutthiprom, J.; Phattharasupakun, N.; Suksomboon, M.; Kaewsongpol, T.; Sirisinudomkit, P.; Pettong, T.; Sawangphruk, M.: High-performance supercapacitor of functionalized carbon fiber paper with high surface ionic and bulk electronic conductivity: effect of organic functional groups. Electrochim. Acta. 176, 504–513 (2015). https://doi.org/10.1016/j.electacta.2015.07.044

    Article  Google Scholar 

  12. Corujeira Gallo, S.; Charitidis, C.; Dong, H.: Surface functionalization of carbon fibers with active screen plasma. J. Vac. Sci. Technol. 35, 021404 (2017). https://doi.org/10.1116/1.4974913

    Article  Google Scholar 

  13. Tran, M.Q.; Ho, K.K.C.; Kalinka, G.; Shaffer, M.S.P.; Bismarck, A.: Carbon fibre reinforced poly(vinylidene fluoride): impact of matrix modification on fibre/polymer adhesion. Compos. Sci. Technol. 68, 1766–1776 (2008). https://doi.org/10.1016/j.compscitech.2008.02.021

    Article  Google Scholar 

  14. Xue, Q.; Sun, J.; Huang, Y.; Zhu, M.; Pei, Z.; Li, H.; Wang, Y.; Li, N.; Zhang, H.; Zhi, C.: Recent progress on flexible and wearable supercapacitors. Small 13, 1–11 (2017). https://doi.org/10.1002/smll.201701827

    Article  Google Scholar 

  15. Xie, S.; Liu, S.; Cheng, P.F.; Lu, X.: Recent advances toward achieving high-performance carbon-fiber materials for supercapacitors. Chem. Electro. Chem. 5, 571–582 (2018). https://doi.org/10.1002/celc.201701020

    Article  Google Scholar 

  16. Mevada, C.; Mukhopadhyay, M.: Electrochemical performance of aqueous asymmetric supercapacitor based on synthesized tin oxide positive and commercial titanium dioxide negative electrodes. J. Energy Storage 33, 102058 (2020). https://doi.org/10.1016/j.est.2020.102058

    Article  Google Scholar 

  17. Mevada, C.; Chandran, P.S.; Mukhopadhyay, M.: Room-temperature synthesis of tin oxide nanoparticles using gallic acid monohydrate for symmetrical supercapacitor application. J. Energy Storage. 28, 101197 (2020). https://doi.org/10.1016/j.est.2020.101197

    Article  Google Scholar 

  18. Mevada, C.; Mukhopadhyay, M.: Electrochemical performance enhancement of high mass loading H-RuO 2 NPs electrode and aqueous symmetrical supercapacitor in the neutral electrolyte. J. Energy Storage. 30, 101453 (2020). https://doi.org/10.1016/j.est.2020.101453

    Article  Google Scholar 

  19. Mevada, C.; Mukhopadhyay, M.: Enhancement of electrochemical properties of hydrous ruthenium oxide nanoparticles coated on chemically activated carbon cloth for solid-state symmetrical supercapacitor application. Mater. Chem. Phys. 245, 122784 (2020). https://doi.org/10.1016/j.matchemphys.2020.122784

    Article  Google Scholar 

  20. Mevada, C.; Mukhopadhyay, M.: High mass loading tin oxide-ruthenium oxide-based nanocomposite electrode for supercapacitor application. J. Energy Storage. 31, 101587 (2020). https://doi.org/10.1016/j.est.2020.101587

    Article  Google Scholar 

  21. Wang, G.; Wang, H.; Lu, X.; Ling, Y.; Yu, M.; Zhai, T.; Tong, Y.; Li, Y.: Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv. Mater. 26, 2676–2682 (2014). https://doi.org/10.1002/adma.201304756

    Article  Google Scholar 

  22. Nakayama, M.; Komine, K.; Inohara, D.: Nitrogen-doped carbon cloth for supercapacitors prepared via a hydrothermal process. J. Electrochem. Soc. 163, A2428–A2434 (2016). https://doi.org/10.1149/2.0091613jes

    Article  Google Scholar 

  23. Jiang, S.; Shi, T.; Zhan, X.; Huang, Y.; Tang, Z.: Superior electrochemical performance of carbon cloth electrode-based supercapacitors through surface activation and nitrogen doping. Ionics (Kiel). 22, 1881–1890 (2016). https://doi.org/10.1007/s11581-016-1723-0

    Article  Google Scholar 

  24. Jiang, S.; Shi, T.; Zhan, X.; Long, H.; Xi, S.; Hu, H.: High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth. J. Power Sources. 272, 16–23 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.049

    Article  Google Scholar 

  25. Zheng, Y.; Zhao, W.; Jia, D.; Cui, L.; Liu, J.: Thermally-treated and acid-etched carbon fiber cloth based on pre-oxidized polyacrylonitrile as self-standing and high area-capacitance electrodes for flexible supercapacitors. Chem. Eng. J. 364, 70–78 (2019). https://doi.org/10.1016/j.cej.2019.01.076

    Article  Google Scholar 

  26. Tiwari, S.; Bijwe, J.: Surface treatment of carbon fibers - a review. Procedia Technol. 14, 505–512 (2014). https://doi.org/10.1016/j.protcy.2014.08.064

    Article  Google Scholar 

  27. Wang, L.; Liu, N.; Guo, Z.; Wu, D.; Chen, W.; Chang, Z.; Yuan, Q.; Hui, M.; Wang, J.: Nitric acid-treated carbon fibers with enhanced hydrophilicity for Candida tropicalis immobilization in xylitol fermentation. Materials (Basel). (2016). https://doi.org/10.3390/ma9030206

    Article  Google Scholar 

  28. Isokoski, K.; Poteet, C.A.; Linnartz, H.: Highly resolved infrared spectra of pure CO 2 ice (15–75 K). Astron. Astrophys. 555, A85 (2013). https://doi.org/10.1051/0004-6361/201321517

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Sophisticated Analytical Instrument Facility (SAIF) and FIST (Physics)–IRCC SPM Central Facility, IIT, Bombay, for providing me sophisticated instrument support for various analytical purposes. We also thank Shree Dhanvantary Pharmaceutical Analysis and Research Centre for their valuable analysis and timely support required for the analysis. We are also thankful to MHRD Govt. of India for providing fellowship and the Department of Chemical Engineering, SVNIT, Surat, for supporting the research by providing their facilities.

Funding

No external funding was received for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mausumi Mukhopadhyay.

Ethics declarations

Conflicts of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samuel, M.S., Mevada, C. & Mukhopadhyay, M. Hydrophilic Carbon Cloth (Chemically Activated) as an Electrode Material For Energy Storage Device. Arab J Sci Eng 47, 5949–5958 (2022). https://doi.org/10.1007/s13369-021-05803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05803-4

Keywords

Navigation