Skip to main content
Log in

Green Fabrication of Copper Oxide Nanoparticles: A Comparative Antibacterial Study Against Gram-Positive and Gram-Negative Bacteria

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Greener synthesis of nanoparticles (NPs) is gaining importance due to its ease and economy. One-pot production of NPs utilizing vegetable peels is purely green. The current study reports the use of cauliflower (Brassica oleracea), potato (Solanum tuberosum), and pea (Pisum sativum) peels extract for the synthesis of copper oxide (CuO) NPs. An ecofriendly approach is established by performing synthesis in an aqueous medium, along with minimum use of chemicals, and low fabrication temperature. FTIR peaks for self-assembled Cu–O bond are found at 526 cm−1, 590 cm−1, and 582 cm−1 for calcined NPs made from cauliflower, potato, and pea extract accordingly. By using CuCl2·2H2O, the particle size of NPs is 32.5 nm, 40.7 nm, and 47.2 nm from cauliflower, potato, and pea peels, respectively. Moreover, differences in NPs shape like roughly spherical and cubical indicate the impact of phytochemicals during construction. Furthermore, this study is an exploration of the antibacterial efficacy of NPs. The inhibitory action of CuO NPs at 45 µg/mL was figured out as Pseudomonas aeruginosa > Escherichia coli > Bacillus subtilus > Staphylococcus aureus. A more significant biocidal effect of NPs was found on the growth of Gram-negative than Gram-positive bacteria. NPs are found superior for inhibition and inactivation of cell growth than NPs parent material against control. The current study presents biowaste management and its conversion to a useful product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ahamed, M.; Alhadlaq, H.A.; Majeed Khan, M.A.; Karuppiah, P.; Al-Dhabi, N.A.: Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J. Nanomater. (2014)

  2. Vinothkumar, P.; Manoharan, C.; Shanmugapriya, B.; Bououdina, M.: Effect of reaction time on structural, morphological, optical, and photocatalytic properties of copper oxide (CuO) nanostructures. J. Mater. Sci. Mater. El. 30, 6249–6262 (2019)

    Google Scholar 

  3. Rafique, M.; Shafiq, F.; Ali Gillani, S.S.; Shakil, M.; Tahir, M.B.; Sadaf, I.: Eco-friendly green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of Rhodamine B dye from textile wastewater. Optik (2019). https://doi.org/10.1016/j.ijleo.2019.164

    Article  Google Scholar 

  4. Padil, V.V.T.; Cernik, M.: Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomed. 8, 889–898 (2013)

    Google Scholar 

  5. Dadi, R.; Azouani, R.; Traore, M.; Mielcarek, C.; Kanaev, A.: Antibacterial activity of ZnO and CuO nanoparticles against gram-positive and gram-negative strains. Mater. Sci. Eng. C Mater. Biol. Appl. (2019)

  6. Shui, A.; Zhu, W.; Xu, L.; Qin, D.; Wang, Y.: Green sonochemical synthesis of cupric and cuprous oxides nanoparticles and their optical properties. Ceram. Int. 39, 8715–8722 (2013)

    Google Scholar 

  7. Ebin, B.; Gençer, Ö.; Gürmen, S.: Simple preparation of CuO nanoparticles and submicron spheres via ultrasonic spray pyrolysis (USP). Int. J. Mater. Res. 104, 199–206 (2013)

    Google Scholar 

  8. Ahmad, T.; Chopra, R.; Ramanujachary, K.V.; Lofand, S.E.; Ganguli, A.K.: Canted antiferromagnetism in copper oxide nanoparticles synthesized by the reverse-micellar route. Solid-State Sci. 7(7), 891–895 (2005)

    Google Scholar 

  9. Hong, Z.S.; Cao, Y.; Deng, J.: A convenient alcohothermal approach for low-temperature synthesis of CuO nanoparticles. Mater. Lett. 52(1–2), 34–38 (2002)

    Google Scholar 

  10. Saravanan, P.; Alam, S.; Mathur, G.N.: A liquid-liquid interface technique to form films of CuO nanowhiskers. Thin Solid Films 491(1–2), 168–172 (2005)

    Google Scholar 

  11. Arunachalam, K.D.; Annamalai, S.K.; Hari, S.: One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int. J. Nanomed. 8, 1307 (2013)

    Google Scholar 

  12. Gnanavel, V.; Palanichamy, V.; Roopan, S.M.: Biosynthesis and characterization of copper oxide nanoparticles and its anticancer activity on human colon cancer cell lines (HCT-116). J. Photochem. Photobiol. B 171, 133–138 (2017)

    Google Scholar 

  13. Nagar, N.V.: Devra: green synthesis and characterization of copper nanoparticles using Azadirachta indica leaves. Mater. Chem. Phys. 213, 44–51 (2018)

    Google Scholar 

  14. Sulaiman, G.M.; Ameer, F.A.A.; Marzoog, T.R.: Synthesis, antibacterial activity of TiO2 nanoparticles suspension induced by laser ablation in liquid. Eng. Technol. J. 32(5 Part (B) Scientific), 877–884 (2014)

    Google Scholar 

  15. Raorane, D.; Shivram Chavan, P.; Pednekar, S.R.; Chaughule, R.: Green and rapid synthesis of copper-doped TiO2 nanoparticles with increased photocatalytic activity. Adv. Chem. Sci. 6, 13 (2017)

    Google Scholar 

  16. Hussain, I.; Singh, N.B.; Singh, A.; Singh, H.; Singh, S.C.: Green synthesis of nanoparticles and its potential application. Biotechnol. Lett. 38, 545–560 (2016)

    Google Scholar 

  17. Sivaraj, R.; Rahman, P.K.S.M.; Rajiv, P.; Salam, H.A.; Venckatesh Sivaraj, R.: Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 178–181 (2013)

    Google Scholar 

  18. Tamuly, C.; Saikia, I.; Hazarika, M.; Das, M.R.: Reduction of aromatic nitro compounds catalyzed by biogenic CuO nanoparticles. RSC Adv. 4(95), 53229–53236 (2014)

    Google Scholar 

  19. Kuppusamy, P., et al.: Intracellular biosynthesis of Au and Ag nanoparticles using ethanolic extract of Brassica oleracea L. and studies on their physicochemical and biological properties. J. Environ. Sci. (China) 29, 151–157 (2015)

    Google Scholar 

  20. Tamileswari, R.; Nisha, M.H.; Jesurani, S.: Green synthesis of silver nanoparticles using Brassica oleracea (cauliflower) and Brassica oleracea Capitata (cabbage) and the analysis of antimicrobial activity. Int. J. Eng. Res. Technol. 4(4), 1071–1074 (2015)

    Google Scholar 

  21. Piruthiviraj, P.; Margret, A.; Krishnamurthy, P.P.: Gold nanoparticles synthesized by Brassica oleracea (Broccoli) acting as antimicrobial agents against human pathogenic bacteria and fungi. Appl. Nanosci. 6, 467–473 (2016)

    Google Scholar 

  22. Chen, Y., et al.: Observation of yttrium oxide nanoparticles in cabbage (Brassica oleracea) through dual-energy K-edge subtraction imaging. J. Nanobiotechnol. 14, 23 (2016)

    Google Scholar 

  23. Oda, A.M.; Abdulkadhim, H.; Jabuk, S.I.A.; Hashim, R.; Fadhil, I.; Alaa, D.; Kareem, A.: Green synthesis of silver nanoparticle by cauliflower extract: characterization and antibacterial activity against storage. IET Nanobiotechnol. 13(5), 74–79 (2019)

    Google Scholar 

  24. Ansar, S.; Tabassum, H.; Aladwan, N.; Naiman Ali, M.; Almaarik, B.; AlMahrouqi, S.; Abudawood, M.; Banu, N.; Alsubki, R.: Eco-friendly silver nanoparticles synthesis by Brassica oleracea and its antibacterial, anticancer and antioxidant properties. Sci. Rep. 10(1), 18564 (2020)

    Google Scholar 

  25. Gupta, V.; Chandra, N.: Biosynthesis and antibacterial activity of metal oxide nanoparticles using Brassica oleracea subsp. botrytis (L.) leaves, an agricultural waste. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 90(5), 1093–1100 (2020)

    MathSciNet  Google Scholar 

  26. Castillo-Lopez, D.N.; Pal, U.: Green synthesis of Au nanoparticles using potato extract: stability and growth mechanism. J. Nanopart. Res. 16, 2571 (2014)

    Google Scholar 

  27. Buazara, F.; Bavia, M.; Kroushawib, F.; Halvania, M.; Khaledi-Nasabe, A.; Hossieni, S.A.: Potato extract as reducing agent and stabilizer in a facile green one-step synthesis of ZnO nanoparticles. J. Exp. Nanosci. 11(3), 175184 (2016)

    Google Scholar 

  28. Almadiy, A.A.; Nenaah, G.E.: Ecofriendly synthesis of silver nanoparticles using potato steroidal alkaloids and their activity against phytopathogenic fungi. Braz. Arch. Biol. Technol. 61, e18180013 (2018)

    Google Scholar 

  29. Patra, J.K.; Das, G.; Shin, H.-S.: Facile green biosynthesis of silver nanoparticles using Pisum sativum L. outer peel aqueous extract and its antidiabetic, cytotoxicity, antioxidant, and antibacterial activity. Int. J. Nanomed. 14, 6679–6690 (2019)

    Google Scholar 

  30. Ullah, H.; Ullah, Z.; Fazal, A.; Irfan, M.: Use of vegetable waste extracts for controlling the microstructure of CuO nanoparticles: green synthesis, characterization, and photocatalytic applications. J. Chem. 1(5) (2017)

  31. Ullah, H.; Mushtaq, L.; Ullah, Z.; Fazal, A.; Khan, A.M.: Effect of vegetable waste extract on microstructure, morphology, and photocatalytic efficiency of ZnO–CuO nanocomposites. Inorg. Nano-Metal Chem. (2020)

  32. Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O.: Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 6(1), 35–44 (2014)

    Google Scholar 

  33. Cuppett, J.D.; Duncan, S.E.; Dietrich, A.M.: Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response. Chem. Senses 31(7), 689–697 (2006)

    Google Scholar 

  34. Sun, L.; Zhang, Z.; Wang, Z.; Wu, Z.; Dang, H.: Synthesis and characterization of CuO nanoparticles from liquid ammonia. Mater. Res. Bull. 40(6), 1024–1027 (2005)

    Google Scholar 

  35. Raul, P.K.; Senapati, S.; Sahoo, A.K.; Umlong, I.M.; Devi, R.R.; Thakur, A.J.; Veera, V.: CuO nanorods: a potential and efficient adsorbent in water purification. RSC Adv. 4, 40580–40587 (2014)

    Google Scholar 

  36. El-Trass, A.; Elshamy, H.; Mehasseb, I.; El-Kemary, M.: CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 258, 2997–3001 (2012)

    Google Scholar 

  37. Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Memic, A.: Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains. Int. J. Nanomed. 7, 3527–3535 (2012)

    Google Scholar 

  38. Vasantharaj, S.; Sathiyavimal, S.; Saravanan, M.; Senthilkumar, P.; Kavitha, G.; Shanmugavel, M.; Manikandan, E.; Pugazhendhi, A.: Synthesis of eco-friendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J. Photochem. Photobiol. B Biol. 191, 149 (2018)

    Google Scholar 

  39. Gowri, G.; Manimegalai, K.: Phytochemical and XRD analysis of cauliflower leaf (Brassica oleracea Var Botrytis L.). World J. Pharm. Pharm. Sci. 6(7), 1277–1282 (2017)

    Google Scholar 

  40. Velasco, P.; Francisco, M.; Moreno, D.A., et al.: Phytochemical fingerprinting of vegetable Brassica oleracea and Brassica napus by simultaneous identification of glucosinolates and phenolics. Phytochem. Anal. 22, 144–152 (2011)

    Google Scholar 

  41. Hadrich, F.; Arbi, M.E.; Boukhris, M.; Sayadi, S.; Cherif, S.: Valorization of the peel of pea: Pisum sativum by evaluation of its antioxidant and antimicrobial activities. J. Oleo Sci. 63(11), 1177–1183 (2014)

    Google Scholar 

  42. El-Feky, A.M.; Elbatanony, M.M.; Mounier, M.M.: Anti-cancer potential of the lipoidal and flavonoidal compounds from Pisum sativum and Vicia faba peels. Egypt J Basic Appl Sci. 5(4), 258–264 (2018)

    Google Scholar 

  43. Sivaraj, R.; Rahman, P.K.S.M.; Rajiv, P.; Salam, H.A.; Sivaraj, R.V.: Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 178–181 (2013)

    Google Scholar 

  44. Assumpta, C.N.; Lovasoa, C.R.; Bashir, A.K.H.; Chinwe, O.I.; Stephen, C.N.; Subelia, B.; Ntwampe, S.K.O.; Fabian, I.E.; Emmanuel, I.I.; Malik, M.: Industrial textile effluent treatment and antibacterial effectiveness of Zea mays L. Dry husk mediated bio-synthesized copper oxide nanoparticles. J. Hazard Mater. 375, 281–289 (2019)

    Google Scholar 

  45. Longano, D.; Ditaranto, N.; Sabbatini, L.; Torsi, L.; Cioffi, N.: Synthesis and antimicrobial activity of copper nanomaterials. Nano-Antimicrob. Prog. Prosp. 3, 85–117 (2012)

    Google Scholar 

  46. Usman, M.S.; El. Zowalaty, M.E.; Shameli, K.; Zainuddin, N.; Salama, M.; Ibrahim, N.A.: Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomed. 8, 4467–4479 (2013)

    Google Scholar 

  47. Gowri, M.; Latha, N.; Rajan, M.: Copper oxide nanoparticles synthesized using Eupatorium odoratum, Acanthospermum hispidum leaf extracts, and its antibacterial effects against pathogens: a comparative study. BioNanoSci. 9, 545–552 (2019)

    Google Scholar 

  48. Sharmila, G.; Pradeep, R.S.; Sandiya, K.; Santhiya, S.; Muthukumaran, C.; Jeyanthi, J.; Kumar, N.; Thirumarimurugan, M.: Biogenic synthesis of CuO nanoparticles using Bauhinia tomentosa leaves extract: characterization and its antibacterial application. J. Mol. Struct. 1165, 288–292 (2018)

    Google Scholar 

  49. Sharmila, G.; Thirumarimurugan, M.; Sivakumar, V.M.: Optical, catalytic and antibacterial properties of phytofabricated CuO nanoparticles using Tecoma castanifolia leaf extract. Optik 127, 7822–7828 (2016)

    Google Scholar 

  50. Raffi, M.; Mehrwan, S.; Bhatti, T.M.; Akhter, J.I.; Hameed, A.; Yawar, W.; Masoodul Hasan, M.: Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann. Microbiol. 60, 75–80 (2010)

    Google Scholar 

  51. Quezada, R.; Quintero, Y.; Salgado, J.C.; Estay, H.; García, A.: understanding the phenomenon of copper ions release from copper-modified TFC membranes: a mathematical and experimental methodology using shrinking core model. Nanomaterials (Basel) 10(6), 1130 (2020)

    Google Scholar 

  52. Bondarenko, O.; Juganson, K.; Ivask, A.; Kasemets, K.; Mortimer, M.; Kahru, A.: Toxicity of Ag, CuO, and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch. Toxicol. 87(7), 1181–1200 (2013)

    Google Scholar 

  53. Ravishankar Rai, V.; Jamuna Bai, A.: Nanoparticles and Their Potential Application as Antimicrobials, Science against Microbial Pathogens: Communicating Current Research and Technological Advances. In: Méndez-Vilas, A. (Ed.) Formatex. Microbiology Series, No. 3, Vol. 1, pp. 197–209. Spain (2011)

    Google Scholar 

  54. Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; Jimenez de Aberasturi, D.; de Larramendi, I.R.; Rojo, T.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M.: Antibacterial properties of nanoparticles. Trends Biotechnol. 30(10), 499–511 (2012)

    Google Scholar 

  55. Khashan, K.S.; Sulaiman, G.M.; Abdulameer, F.A.: Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid. Arab. J. Sci. Eng. 41, 301–310 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aliya Fazal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazal, A., Ara, S., Ishaq, M.T. et al. Green Fabrication of Copper Oxide Nanoparticles: A Comparative Antibacterial Study Against Gram-Positive and Gram-Negative Bacteria. Arab J Sci Eng 47, 523–533 (2022). https://doi.org/10.1007/s13369-021-05767-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05767-5

Keywords

Navigation