Skip to main content

Advertisement

Log in

Application of Higher-Order Alcohols (1-Hexanol-C6 and 1-Heptanol-C7) in a Spark-Ignition Engine: Analysis and Assessment

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Studies on the usage of gasoline–alcohol blends as an alternative fuel in spark-ignition engines have recently gained momentum. In the present research, energy, exergy, environmental, enviroeconomic, exergoenvironmental, and exergoenviroeconomic analyses were conducted with the performance and emission values acquired by utilizing gasoline, gasoline–heptanol, and gasoline–hexanol fuels (G100, HEX5-20, and HP5-20) as a fuel under different powers at a constant speed of 1600 rpm in a single-cylinder four-stroke spark-ignition engine. As the ratio of alcohol in fuel blends increases, fuel consumption also increases. NOX emission is higher, and CO and HC emissions are lower in alcohol-based fuel blends than G100 fuel. The highest thermal efficiency is 41.09% in G100 fuel at a power of 5 kW. As the ratio of alcohol in fuel blends increases, thermal efficiency decreases. The highest exergy destruction and entropy generation were determined to be 6.25 kW and 0.02134 kW/K, respectively, in HP20 fuel at a power of 5 kW. Entropy generation increases with an increase in the ratio of alcohol in alcohol-based fuels. HEX20 and HP20 fuels produce 25% and 30% more entropy, respectively, compared to G100 fuel. The mass and financial costs of the damage caused by the CO2 emission of fuels to the environment were determined by conducting four different analyses using energy and exergy analysis data. According to the exergoenvironmental and exergoenviroeconomic analyses, HP20 fuel reached the highest environmental pollution values of 4538.19 kg CO2/month and 65.804 $/month, respectively. The environmental cost of the CO2 emission released from the exhaust to the atmosphere is higher in alcohol-based fuels than G100 fuel. As a result of all analyses, it was concluded that hexanol and heptanol could be alternative fuels in spark-ignition engines under particular conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data used and/or analyzed throughout the present study are available from the authors on reasonable request.

Abbreviations

\(C_{{co_{2} }}\) :

CO2 emission (kg CO2/time)

Cp:

Specific heat capacity (kJ/kgK)

\({\text{E}}_{{{\text{co}}_{2} }}\) :

Envireconomic parameter ($/time)

\({\text{Ex}}_{{co_{2} }}\) :

Exergoenvireconomic parameter ($/time)

E fuel :

Energy of fuel (kW)

\({\dot{\text{E}}\text{x}}\) :

Exergy rate (kW)

Hu:

Heat value of fuel (kJ/kg)

h:

Enthalpy (kJ)

\(\dot{m}\) :

Mass flow rate (kg/s)

n:

Engine speed (rpm)

N:

Total usage time (year)

\({\text{N}}_{{{\text{co}}_{2} }}\) :

CO2 emission value (kg CO2/kWh)

P:

Pressure (kPa)

P0 :

Pressure of the environment (kPa)

\({\text{P}}_{{co_{2} }}\) :

CO2 emission value ($/kWCO2)

\(\dot{Q}\) :

Heat transfer rate (kW)

R:

Gas constant (kJ/kgK)

\({\overline{\text{R}}}\) :

Universal gas constant (8.314 J mol/K)

T:

Temperature (K)

T0 :

Temperature of the environment (K)

T:

Torque (Nm)

tw :

Cumulative working hours (h)

rpm:

Revolutions per minute

s:

Entropy (kJ/kg.K)

Sgen :

Entropy produced (kW/K)

ye :

Component mole fraction (%)

\(\dot{W}\) :

Work (kW

η:

Thermal efficiency

µ :

Gas viscosity

ψ:

Fuel exergy factor

ε:

Flow exergy

a:

Air

chem:

Chemical

cw:

Cooling water

CI:

Capital investment

cw:

Coolant water

dest:

Destruction

g :

Exhaust gas

heat:

Heat transfer

in:

Inlet

k :

Kinetic

out:

Outlet

p :

Potential

phy:

Physical

ref:

Reference

s :

Source

w :

Work

0:

Environmental conditions

C8H18 :

Gasoline

C7H16O:

Heptanol

C6H14O:

Hexanol

CO:

Carbon monoxide

CO2 :

Carbon dioxide

EXENEC:

Exergoenviroeconomic

EXEN:

Exergoenvironment

G100:

100% Gasoline

HC:

Hydrocarbon

HEX5:

5% Hexanol and 95% gasoline blend

HEX10:

10% Hexanol and 90% gasoline blend

HEX15:

15% Hexanol and 85% gasoline blend

HEX20:

20% Hexanol and 80% gasoline blend

HP5:

5% Heptanol and 95% gasoline blend

HP10:

10% Heptanol and 90% gasoline blend

HP15:

15% Heptanol and 85% gasoline blend

HP20:

20% Heptanol and 80% gasoline blend

N:

Nitrogen

NOx :

Nitrogen oxide

O2 :

Oxygen

PFI:

Port fuel injection

TEP:

Total environmental pollution

References

  1. Yılmaz, E.: A comparative study on the usage of RON68 and naphtha in an HCCI engine. Int. J. Autom. Sci. Technol. 4(2), 90–97 (2020)

    Article  Google Scholar 

  2. Demirbas, A.: Fuel alternatives to gasoline. Energy Sources Part B 2(3), 311–320 (2007)

    Article  Google Scholar 

  3. Cecrle, E.; Depcik, C.; Duncan, A.; Guo, J.; Mangus, M.; Peltier, E.; Stagg-Williams, S.; Zhong, Y.: Investigation of the effects of biodiesel feedstock on the performance and emissions of a single-cylinder diesel engine. Energy Fuels 26(4), 2331–2341 (2012)

    Article  Google Scholar 

  4. Uyumaz, A.; Aydoğan, B.; Yılmaz, E.; Solmaz, H.; Aksoy, F.; Mutlu, İ; İpci, D.; Calam, A.: Experimental investigation on the combustion, performance and exhaust emission characteristics of poppy oil biodiesel-diesel dual fuel combustion in a CI engine. Fuel 280, 118588 (2020)

    Article  Google Scholar 

  5. Örs, İ; Sayın, B.; Ciniviz, M.: A comparative study of ethanol and methanol addition effects on engine performance, combustion and emissions in the SI engine. Int. J. Autom. Sci. Technol. 4(2), 59–69 (2020)

    Article  Google Scholar 

  6. Doğan, B.; Erol, D.: The future of fossil and alternative fuels used in automotive industry. In: 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), IEEE, pp. 1–8 (2019)

  7. Doğan, B.; Yesilyurt, M.K.; Erol, D.; Cakmak, A.: A study toward analyzing the energy, exergy and sustainability index based on performance and exhaust emission characteristics of a spark-ignition engine fuelled with the binary blends of gasoline and methanol or ethanol. Int. J. Eng. Res. Dev. 12(2), 529–548 (2020)

    Google Scholar 

  8. Solmaz, H.: Combustion, performance and emission characteristics of fusel oil in a spark ignition engine. Fuel Process. Technol. 133, 20–28 (2015)

    Article  Google Scholar 

  9. Yusri, I.M.; Mamat, R.; Najafi, G.; Razman, A.; Awad, O.I.; Azmi, W.H.; Ishak, W.F.W.; Shaiful, A.I.M.: Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: a review on engine performance and exhaust emissions. Renew. Sustain. Energy Rev. 77, 169–181 (2017)

    Article  Google Scholar 

  10. Erdiwansyah, M.R.; Mamat, R.; Sani, M.S.M.; Sudhakar, K.; Kadarohman, A.; Sardjono, R.E.: An overview of higher alcohol and biodiesel as alternative fuels in engines. Energy Rep. 5, 467–479 (2019)

    Article  Google Scholar 

  11. No, S.Y.: Application of Liquid Biofuels to İnternal Combustion Engines. Springer, Singapore (2019).

    Book  Google Scholar 

  12. Bergthorson, J.M.; Thomson, M.J.: A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines. Renew. Sustain. Energy Rev. 42, 1393–1417 (2015)

    Article  Google Scholar 

  13. Sundar, R.C.; Saravanan, G.: Influence of hexanol-diesel blends on constant speed diesel engine. Therm. Sci. 15(4), 1215–1222 (2011)

    Article  Google Scholar 

  14. Lawyer, K.: Incorporation of higher carbon number alcohols in gasoline blends for application in spark-ignition engines. Michigan Technological University, Doctoral Thesis (2017)

  15. Thermodynamics and Fluid Mechanics Group; Annand, W.J.D.: Heat transfer in the cylinders of reciprocating internal combustion engines. Proc. Inst. Mech. Eng., 177(1):973–996 (1963).

  16. Rakopoulos, C.D.; Giakoumis, E.G.: Second-law analyses applied to internal combustion engines operation. Prog. Energy Combust. Sci. 32(1), 2–47 (2006)

    Article  Google Scholar 

  17. Agarwal, A.K.: Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 33(3), 233–271 (2007)

    Article  Google Scholar 

  18. Eisavi, B.; Khalilarya, S.; Chitsaz, A.; Rosen, M.A.: Thermodynamic analysis of a novel combined cooling, heating and power system driven by solar energy. Appl. Therm. Eng. 129, 1219–1229 (2018)

    Article  Google Scholar 

  19. Odibi, C.; Babaie, M.; Zare, A.; Nabi, M.N.; Bodisco, T.A.; Brown, R.J.: Exergy analysis of a diesel engine with waste cooking biodiesel and triacetin. Energy Convers. Manag. 198, 111912 (2019)

    Article  Google Scholar 

  20. Das, A.K.; Hansdah, D.; Mohapatra, A.K.; Panda, A.K.: Energy, exergy and emission analysis on a DI single cylinder diesel engine using pyrolytic waste plastic oil diesel blend. J. Energy Inst. 93(4), 1624–1633 (2020)

    Article  Google Scholar 

  21. Nabi, M.N.; Rasul, M.G.; Anwar, M.; Mullins, B.J.: Energy, exergy, performance, emission and combustion characteristics of diesel engine using new series of non-edible biodiesels. Renew. Energy 140, 647–657 (2019)

    Article  Google Scholar 

  22. Yao, Z.M.; Qian, Z.Q.; Li, R.; Hu, E.: Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy. Energy 176, 991–1006 (2019)

    Article  Google Scholar 

  23. Yesilyurt, M.K.; Arslan, M.: Analysis of the fuel injection pressure effects on energy and exergy efficiencies of a diesel engine operating with biodiesel. Biofuels 10(5), 643–655 (2019)

    Article  Google Scholar 

  24. Kweku, D.W.; Bismark, O.; Maxwell, A.; Desmond, K.A.; Danso, K.B.; Oti-Mensah, E.A.; Quachie, A.T.; Adormaa, B.B.: Greenhouse effect: greenhouse gases and their impact on global warming. J. Sci. Res. Rep. 17(6), 1–9 (2017)

    Google Scholar 

  25. Giwa, S.O.; Sulaiman, M.A.; Nwaokocha, C.N.: Inventory of greenhouse gases emissions from gasoline and diesel consumption in Nigeria. Niger. J. Technol. Dev. 14(1), 1–12 (2017)

    Article  Google Scholar 

  26. Farrauto, R.J.; Deeba, M.; Alerasool, S.: Gasoline automobile catalysis and its historical journey to cleaner air. Nat. Catal. 2(7), 603–613 (2019)

    Article  Google Scholar 

  27. Mat Aron, N.S.; Khoo, K.S.; Chew, K.W.; Show, P.L.; Chen, W.H.; Nguyen, T.H.P.: Sustainability of the four generations of biofuels—a review. Int. J. Energy Res. 44(12), 9266–9282 (2020)

    Article  Google Scholar 

  28. Tongroon, M.; Saisirirat, P.; Suebwong, A.; Aunchaisri, J.; Kananont, M.; Chollacoop, N.: Combustion and emission characteristics investigation of diesel-ethanol-biodiesel blended fuels in a compression-ignition engine and benefit analysis. Fuel 255, 115728 (2019)

    Article  Google Scholar 

  29. Carneiro, M.L.N.; Gomes, M.S.P.: Energy, exergy, environmental and economic analysis of hybrid waste-to-energy plants. Energy Convers. Manag. 179, 397–417 (2019)

    Article  Google Scholar 

  30. Ibrahim, T.K.; Mohammed, M.K.; Awad, O.I.; Abdalla, A.N.; Basrawi, F.; Mohammed, M.N.; Najafi, G.; Mamat, R.: A comprehensive review on the exergy analysis of combined cycle power plants. Renew. Sustain. Energy Rev. 90, 835–850 (2018)

    Article  Google Scholar 

  31. Aloko, D.; Adebayo, G.A.; Oke, O.E.: Evaluation of diesel-hexanol blend as diesel fuel. Leonardo Electron. J. Pract. Technol. 10(6), 151–156 (2007)

    Google Scholar 

  32. De. Poures, M.V.; Sathiyagnanam, A.P.; Rana, D.; Kumar, B.R.; Saravanan, S.: 1-Hexanol as a sustainable biofuel in DI diesel engines and its effect on combustion and emissions under the influence of injection timing and exhaust gas recirculation (EGR). Appl. Therm. Eng. 113, 1505–1513 (2017)

    Article  Google Scholar 

  33. Babu, D.; Anand, R.: Effect of biodiesel-diesel-n-pentanol and biodiesel-diesel-n-hexanol blends on diesel engine emission and combustion characteristics. Energy 133, 761–776 (2017)

    Article  Google Scholar 

  34. Doğan, B.; Erol, D.; Yaman, H.; Kodanlı, E.: The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis. Appl. Therm. Eng. 120, 433–443 (2017)

    Article  Google Scholar 

  35. Suhaimi, H.; Adam, A.; Mrwan, A.G.; Abdullah, Z.; Othman, M.F.; Kamaruzzaman, M.K.; Hagos, F.Y.: Analysis of combustion characteristics, engine performances and emissions of long-chain alcohol-diesel fuel blends. Fuel 220, 682–691 (2018)

    Article  Google Scholar 

  36. Pandian, A.K.; Munuswamy, D.B.; Radhakrishanan, S.; Devarajan, Y.; Ramakrishnan, R.B.B.; Nagappan, B.: Emission and performance analysis of a diesel engine burning cashew nut shell oil bio diesel mixed with hexanol. Pet. Sci. 15(1), 176–184 (2018)

    Article  Google Scholar 

  37. Ashok, B.; Nanthagopal, K.; Darla, S.; Chyuan, O.H.; Ramesh, A.; Jacob, A.; Sahil, G.; Thiyagarajan, S.; Geo, V.E.: Comparative assessment of hexanol and decanol as oxygenated additives with calophyllum inophyllum biodiesel. Energy 173, 494–510 (2019)

    Article  Google Scholar 

  38. Kumar, B.R.; Saravanan, S.; Rana, D.; Nagendran, A.: A comparative analysis on combustion and emissions of some next generation higher-alcohol/diesel blends in a direct-injection diesel engine. Energy Convers. Manage. 119, 246–256 (2016)

    Article  Google Scholar 

  39. Kumar, B.R.; Saravanan, S.: Use of higher alcohol biofuels in diesel engines: a review. Renew. Sustain. Energy Rev. 60, 84–115 (2016)

    Article  Google Scholar 

  40. Nour, M.; Attia, A.M.; Nada, S.A.: Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy Manag. 185, 313–329 (2019)

    Google Scholar 

  41. Devarajan, Y.; Munuswamy, D.B.; Radhakrishnan, S.; Mahalingam, A.; Nagappan, B.: Experimental testing and evaluation of neat biodiesel and heptanol blends in diesel engine. J. Test. Eval. 47(2), 987–997 (2019)

    Article  Google Scholar 

  42. Yesilyurt, M.K.: A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol. Fuel 275, 117893 (2020)

    Article  Google Scholar 

  43. Uslu, S.; Çelik, M.B.: Combustion and emission characteristics of isoamyl alcohol-gasoline blends in spark ignition engine. Fuel 262, 116496 (2020)

    Article  Google Scholar 

  44. Doğan, B.; Erol, D.; Kodanlı, E.: The investigation of exergoeconomic, sustainability and environmental analyses in an SI engine fuelled with different ethanol-gasoline blends. Int. J. Exergy 32(4), 412–436 (2020)

    Article  Google Scholar 

  45. Şöhret, Y.; Gürbüz, H.; Akçay, İH.: Energy and exergy analyses of a hydrogen fueled SI engine: effect of ignition timing and compression ratio. Energy 175, 410–422 (2019)

    Article  Google Scholar 

  46. Bhatti, S.S.; Verma, S.; Tyagi, S.K.: Energy and exergy based performance evaluation of variable compression ratio spark ignition engine based on experimental work. Therm. Sci. Eng. Progress 9, 332–339 (2019)

    Article  Google Scholar 

  47. Rufino, C.H.; de Lima, A.J.; Mattos, A.P.; Allah, F.U.; Bernal, J.L.; Ferreira, J.V.; Gallo, W.L.: Exergetic analysis of a spark ignition engine fuelled with ethanol. Energy Convers. Manage. 192, 20–29 (2019)

    Article  Google Scholar 

  48. Doğan, B.; Cakmak, A.; Yesilyurt, M.K.; Erol, D.: Investigation on 1-heptanol as an oxygenated additive with diesel fuel for compression-ignition engine applications: An approach in terms of energy, exergy, exergoeconomic, enviroeconomic, and sustainability analyses. Fuel 275, 117973 (2020)

    Article  Google Scholar 

  49. Holman, P.: Experimental Methods for Engineers, 8th edn. McGraw-Hill, New York, USA (2012)

    Google Scholar 

  50. Masum, B.M.; Masjuki, H.H.; Kalam, M.A.; Palash, S.; Habibullah, M.: Effect of alcohol–gasoline blends optimization on fuel properties, performance and emissions of a SI engine. J. Clean. Prod. 86, 230–237 (2015)

    Article  Google Scholar 

  51. EL-Seesy, A.I.; Kayatas, Z.; Hawi, M.; Kosaka, H.; He, Z.: Combustion and emission characteristics of a rapid compression-expansion machine operated with N-heptanol-methyl oleate biodiesel blends. Renew. Energy 147, 2064–2076 (2020)

    Article  Google Scholar 

  52. EL-Seesy, A.I.; He, Z.; Kosaka, H.: Combustion and emission characteristics of a common rail diesel engine run with n-Heptanol-Methyl oleate mixtures. Energy 214, 118972 (2021)

    Article  Google Scholar 

  53. Kopaç, M.; Köktürk, L.: Determination of optimum speed of an internal combustion engine by exergy analysis. Int. J. Exergy 2(1), 40–54 (2005)

    Article  Google Scholar 

  54. Şöhret, Y.; Dinç, A.; Karakoç, T.H.: Exergy analysis of a turbofan engine for an unmanned aerial vehicle during a surveillance mission. Energy 93, 716–729 (2015)

    Article  Google Scholar 

  55. Şöhret, Y.; Açıkkalp, E.; Hepbasli, A.; Karakoc, T.H.: Advanced exergy analysis of an aircraft gas turbine engine: splitting exergy destructions into parts. Energy 90, 1219–1228 (2015)

    Article  Google Scholar 

  56. Aghbashlo, M.; Tabatabaei, M.; Mohammadi, P.; Pourvosoughi, N.; Nikbakht, A.M.; Goli, S.A.H.: Improving exergetic and sustainability parameters of a DI diesel engine using polymer waste dissolved in biodiesel as a novel diesel additive. Energy Convers. Manage. 105, 328–337 (2015)

    Article  Google Scholar 

  57. Şanli, B.G.; Uludamar, E.; Özcanli, M.: Evaluation of energetic-exergetic and sustainability parameters of biodiesel fuels produced from palm oil and opium poppy oil as alternative fuels in diesel engines. Fuel 258, 116116 (2020)

    Article  Google Scholar 

  58. Yesilyurt, M.K.: The examination of a compression-ignition engine powered by peanut oil biodiesel and diesel fuel in terms of energetic and exergetic performance parameters. Fuel 278, 118319 (2020)

    Article  Google Scholar 

  59. Aghbashlo, M.; Rosen, M.A.: Exergoeconoenvironmental analysis as a new concept for developing thermodynamically, economically, and environmentally sound energy conversion systems. J. Clean. Prod. 187, 190–204 (2018)

    Article  Google Scholar 

  60. Çakmak, A.; Bilgin, A.: Exergy and energy analysis with economic aspects of a diesel engine running on biodiesel-diesel fuel blends. Int. J. Exergy 24(2–4), 151–172 (2017)

    Article  Google Scholar 

  61. Özcan, H.; Çakmak, A.: Comparative exergy analysis of fuel additives containing oxygen and HC based in a Spark-Ignition (SI) engine. Int. J. Autom. Eng. Technol. 7(3), 124–133 (2018)

    Google Scholar 

  62. Moran, M.J.; Shapiro, H.N.; Boettner, D.D.; Bailey, M.B.: Fundamentals of Engineering Thermodynamics. Wiley (2010)

    Google Scholar 

  63. Şanli, B.G.: Energetic and exergetic performance of a diesel engine fueled with diesel and microalgae biodiesel. Energy Sources Part A Recovery Util. Environ. Eff. 41(20), 2519–2533 (2019)

    Article  Google Scholar 

  64. Chaudhary, V.; Gakkhar, R.: Exergy based performance comparison of DI diesel engine fuelled with WCO15 and NEEM15 biodiesel. Environ. Prog. Sustain. Energy 39(3), e13363 (2020)

    Article  Google Scholar 

  65. Hürdoğan, E.: Thermodynamic analysis of a diesel engine fueled with diesel and peanut biodiesel. Environ. Prog. Sustain. Energy 35(3), 891–897 (2016)

    Article  Google Scholar 

  66. Kumar, R.: A critical review on energy, exergy, exergoeconomic and economic (4-E) analysis of thermal power plants. Eng. Sci. Technol. Int. J. 20(1), 283–292 (2017)

    Google Scholar 

  67. Rosen, M.A.; Dincer, I.; Kanoglu, M.: Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 36(1), 128–137 (2008)

    Article  Google Scholar 

  68. Aghbashlo, M.; Tabatabaei, M.; Mohammadi, P.; Mirzajanzadeh, M.; Ardjmand, M.; Rashidi, A.: Effect of an emission-reducing soluble hybrid nanocatalyst in diesel/biodiesel blends on exergetic performance of a DI diesel engine. Renew. Energy 93, 353–368 (2016)

    Article  Google Scholar 

  69. Altuntas, O.; Karakoc, T.H.; Hepbasli, A.: Exergetic, exergoeconomic and sustainability assessment of piston-prop aircraft engine. J. Therm. Sci. Technol. 32(2), 133–143 (2012)

    Google Scholar 

  70. Caliskan, H.: Energy, exergy, environmental, enviroeconomic, exergoenvironmental (EXEN) and exergoenviroeconomic (EXENEC) analyses of solar collectors. Renew. Sustain. Energy Rev. 69, 488–492 (2017)

    Article  Google Scholar 

  71. Aghbashlo, M.; Tabatabaei, M.; Mohammadi, P.; Khoshnevisan, B.; Rajaeifar, M.A.; Pakzad, M.: Neat diesel beats waste-oriented biodiesel from the exergoeconomic and exergoenvironmental point of views. Energy Convers. Manag. 148, 1–15 (2017)

    Article  Google Scholar 

  72. Caliskan, H.; Mori, K.: Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems. Energy 128, 128–144 (2017)

    Article  Google Scholar 

  73. Ganjehkaviri, A.; Jaafar, M.M.; Ahmadi, P.; Barzegaravval, H.: Modelling and optimization of combined cycle power plant based on exergoeconomic and environmental analyses. Appl. Therm. Eng. 67(1–2), 566–578 (2014)

    Article  Google Scholar 

  74. Caliskan, H.; Dincer, I.; Hepbasli, A.: Exergoeconomic and environmental impact analyses of a renewable energy based hydrogen production system. Int. J. Hydrogen Energy 38(14), 6104–6111 (2013)

    Article  Google Scholar 

  75. Caliskan, H.; Dincer, I.; Hepbasli, A.: A comparative study on energetic, exergetic and environmental performance assessments of novel M-Cycle based air coolers for buildings. Energy Convers. Manag. 56, 69–79 (2012)

    Article  Google Scholar 

  76. Caliskan, H.; Dincer, I.; Hepbasli, A.: Exergoeconomic, enviroeconomic and sustainability analyses of a novel air cooler. Energy Build. 55, 747–756 (2012)

    Article  Google Scholar 

  77. Yildiz, I.; Açıkkalp, E.; Caliskan, H.; Mori, K.: Environmental pollution cost analyses of biodiesel and diesel fuels for a diesel engine. J. Environ. Manag. 243, 218–226 (2019)

    Article  Google Scholar 

  78. Balki, M.K.; Sayin, C.; Canakci, M.: The effect of different alcohol fuels on the performance, emission and combustion characteristics of a gasoline engine. Fuel 115, 901–906 (2014)

    Article  Google Scholar 

  79. Yao, Y.C.; Tsai, J.H.; Chiang, H.L.: Effects of ethanol-blended gasoline on air pollutant emissions from motorcycle. Sci. Total Environ. 407(19), 5257–5262 (2009)

    Article  Google Scholar 

  80. Celik, M.B.: Experimental determination of suitable ethanol–gasoline blend rate at high compression ratio for gasoline engine. Appl. Therm. Eng. 28(5–6), 396–404 (2008)

    Article  Google Scholar 

  81. Gravalos, I.; Moshou, D.; Gialamas, T.; Xyradakis, P.; Kateris, D.; Tsiropoulos, Z.: Performance and emission characteristics of spark ignition engine fuelled with ethanol and methanol gasoline blended fuels. Altern. Fuel 85, 155–174 (2011)

    Google Scholar 

  82. Gravalos, I.; Moshou, D.; Gialamas, T.; Xyradakis, P.; Kateris, D.; Tsiropoulos, Z.: Emissions characteristics of spark ignition engine operating on lower–higher molecular mass alcohol blended gasoline fuels. Renew. Energy 50, 27–32 (2013)

    Article  Google Scholar 

  83. Yacoub, Y.; Bata, R.; Gautam, M.: The performance and emission characteristics of C1–C5 alcohol-gasoline blends with matched oxygen content in a single-cylinder spark ignition engine. Proc. Inst. Mech. Eng. Part A J. Power Energy 212(5), 363–379 (1998)

    Article  Google Scholar 

  84. Chen, R.H.; Chiang, L.B.; Chen, C.N.; Lin, T.H.: Cold-start emissions of an SI engine using ethanol–gasoline blended fuel. Appl. Therm. Eng. 31(8–9), 1463–1467 (2011)

    Article  Google Scholar 

  85. Canakci, M.; Ozsezen, A.N.; Alptekin, E.; Eyidogan, M.: Impact of alcohol–gasoline fuel blends on the exhaust emission of an SI engine. Renew. Energy 52, 111–117 (2013)

    Article  Google Scholar 

  86. Wang, X.; Chen, Z.; Ni, J.; Liu, S.; Zhou, H.: The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine. Case Stud. Therm. Eng. 6, 147–154 (2015)

    Article  Google Scholar 

  87. Li, L.; Ge, Y.; Wang, M.; Peng, Z.; Song, Y.; Zhang, L.; Yuan, W.: Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends. Sci. Total Environ. 502, 627–631 (2015)

    Article  Google Scholar 

  88. Kul, B.S.; Ciniviz, M.: An evaluation based on energy and exergy analyses in SI engine fueled with waste bread bioethanol-gasoline blends. Fuel 286, 119375 (2021)

    Article  Google Scholar 

  89. Bharathiraja, M.; Venkatachalam, R.; Senthilmurugan, V.: Performance, emission, energy and exergy analyses of gasoline fumigated DI diesel engine. J. Therm. Anal. Calorim. 136(1), 281–293 (2019)

    Article  Google Scholar 

  90. Kiani, M.K.D.; Rostami, S.; Eslami, M.; Yusaf, T.; Sendilvelan, S.: The effect of inlet temperature and spark timing on thermo-mechanical, chemical and the total exergy of an SI engine using bioethanol-gasoline blends. Energy Convers. Manag. 165, 344–353 (2018)

    Article  Google Scholar 

  91. Tippawan, P.; Arpornwichanop, A.; Dincer, I.: Energy and exergy analyses of an ethanol-fueled solid oxide fuel cell for a trigeneration system. Energy 87, 228–239 (2015)

    Article  Google Scholar 

  92. Nazzal, I.T.: Energy and exergy analysis of spark ignited engine fueled with gasoline–ethanol–butanol blends. AIMS Energy 8(6), 1007–1028 (2020)

    Article  Google Scholar 

Download references

Funding

This research is funded by the Scientific Research Projects Coordination Unit of Kırıkkale University. Project Number: 2018/067.

Author information

Authors and Affiliations

Authors

Contributions

Hayri Yaman has contributed in research objectives, data analysis plan, validation of results, revision/proofreading, and final approval. Battal Doğan to the definition of research objectives, hypotheses, data analysis plan, validation of results, article writing, revision/proofreading, and final approval. Murat Kadir Yeşilyurt has contributed to the definition of research objectives, hypotheses, results interpretation, validation of results, article writing, revision /proofreading, and final approval. Derviş Erol has contributed in research objectives, data analysis plan, designing of the graphs, validation of results, article writing, revision/proofreading, and final approval.

Corresponding author

Correspondence to Derviş Erol.

Ethics declarations

Conflict of interest

The authors pointed out that there is no potential conflict of interest. The authors declared that there is no competing financial interest in this research.

Ethical approval

The authors declared that no animal and human studies are presented in this manuscript and no potentially identifiable human images or data are given in this research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaman, H., Doğan, B., Yeşilyurt, M.K. et al. Application of Higher-Order Alcohols (1-Hexanol-C6 and 1-Heptanol-C7) in a Spark-Ignition Engine: Analysis and Assessment. Arab J Sci Eng 46, 11937–11961 (2021). https://doi.org/10.1007/s13369-021-05765-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05765-7

Keywords

Navigation