Skip to main content

Advertisement

Log in

Low-Interacted Multiple Antenna Systems Based on Metasurface-Inspired Isolation Approach for MIMO Applications

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper investigates a simple method based on the metasurface concept to suppress the mutual-coupling between the radiation parts of a 2 × 2 antenna-arrays. The array-antennas have constructed of four circular-patches implemented on the FR-4 substrate, so each patch has separately excited by a waveguide-port. The proposed decoupling-approach inspired the metasurface principle has applied by realizing the rectangular-slots in a linear and series configuration incorporated between the antennas to decrease their interaction and reduce the surface-waves. The proposed slots act like series left-handed capacitors. To achieve more isolation, the metallic via-holes have employed between the rectangular-slots across the substrate-layer, which has caused to suppress the substrate-losses. The via-holes behave like shunt left-handed inductors. By incorporating series slots and via-holes, the metasurafce-inspired decoupling-slab has realized without increasing the physical dimensions. The results show that by the proposed method the substrate-loses, surface-waves, and interaction between the radiation elements have significantly diminished and as resultant the array's performances such as impedance bandwidth, fractional bandwidth, impedance matching, isolation between antennas #1&#2, #1&#3, #1&#4, radiation gain, and efficiency have improved by 2.1 GHz, 21.2%, 4 dB, 12 dB, 16 dB, 13 dB, 3.2 dBi, and 23%, respectively, which exhibit the effectiveness of the proposed metasurface-based isolation-slab. The fabricated proposed 2 × 2 array-antennas with compact dimensions of 40 \(\times \) 40 \(\times \) 0.8 mm3 and edge-to-edge distance between the radiation components of 0.16 \({\lambda }_{0}\) operates over approximately entire X-band spectrum of 8.2–12 GHz, which corresponds to 37.62% practical bandwidth. The array antennas exhibit an average efficiency and gain of 76% and 8.5dBi, which enable it to be applicable for MIMO systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data are included within the manuscript.

Code availability

Not applicable.

References

  1. Abd-Alhameed, R.A., et al.: A comprehensive survey of “metamaterial transmission-line based antennas: design, challenges, and applications.” IEEE Access 8, 144778–144808 (2020)

    Article  Google Scholar 

  2. Salekzamankhani, S., et al.: Study on improvement of the performance parameters of a novel 0.41-0.47 THz on-chip antenna based on metasurface concept realized on 50μm GaAs-layer. Sci. Rep. 10, 11034 (2020)

    Article  Google Scholar 

  3. Yin, H.; Gesbert, D.; Filippou, M.; Liu, Y.: A coordinated approach to channel estimation in large-scale multiple-antenna systems. IEEE J. Sel. Areas Commun. 31(2), 264–273 (2013)

    Article  Google Scholar 

  4. Fan, W.; Carreno, X.; Kyosti, P.; Nielsen, J.O.; Pedersen, G.F.: Over-the-air testing of mimo-capable terminals: evaluation of multiple-antenna systems in realistic multipath propagation environments using an ota method. IEEE Veh. Technol. Mag. 10(2), 38–46 (2015)

    Article  Google Scholar 

  5. Huynen, I., et al.: A comprehensive survey on “various decoupling mechanisms with focus on metamaterial and metasurface principles applicable to SAR and MIMO antenna systems.” IEEE Access 8, 192965–193004 (2020)

    Article  Google Scholar 

  6. Herscovici, N.; Christodoulou, C.; Rajo-Iglesias, E.; Quevedo-Teruel, O.; Sanchez-Fernandez, M.: Compact multimode patch antennas for MIMO applications [wireless corner]. IEEE Antennas Propag. Mag. 50(2), 197–205 (2008)

    Article  Google Scholar 

  7. Jafargholi, A.; Jafargholi, A.; Choi, J.H.: Mutual coupling reduction in an array of patch antennas using CLL metamaterial superstrate for MIMO applications. IEEE Trans. Antennas Propag. 67(1), 179–189 (2019)

    Article  Google Scholar 

  8. Elwi, T.A.: A miniaturized folded antenna array for MIMO applications. Wirel Pers Commun 98, 1871–1883 (2018)

    Article  Google Scholar 

  9. Falcone, F., et al. Array antenna for synthetic aperture radar operating in X and Ku-bands: a study to enhance isolation between radiation elements. In: EUSAR 2018; 12th European Conference on Synthetic Aperture Radar, pp. 1083–1087, Aachen, Germany (2018)

  10. Malviya, L.; Panigrahi, R.; Kartikeyan, M.: MIMO antennas with diversity and mutual coupling reduction techniques: a review. Int. J. Microw. Wirel. Technol. 9(8), 1763–1780 (2017)

    Article  Google Scholar 

  11. Alsultan, R.G.S.; Ögücü Yetkin, G.: Mutual coupling reduction of E-Shaped MIMO Antenna With Matrix of C-shaped resonators. Int. J. Antennas Propag. 2018, 13 (2018)

    Article  Google Scholar 

  12. Li, Q.; Ding, C.; Yang, R.; Tan, M.; Wu, G.; Lei, X.; Jiang, X.; Fang, S.; Huang, M.; Gong, Y.; Wei, Y.: Mutual coupling reduction between patch antennas using meander line. Int. J. Antennas Propag. 2018, 7 (2018)

    Google Scholar 

  13. Virdee, B.S., et al.: Study on Isolation And Radiation Behaviours of a 34×34 array-antennas based on SIW and metasurface properties for applications in terahertz band over 125–300 GHz. Optik Int. J. Light Electr. Opt. 206, 163222 (2020)

    Article  Google Scholar 

  14. Shukla, P., et al.: Isolation enhancement of densely packed array antennas with periodic MTM-photonic bandgap for SAR and MIMO systems. IET Microw. Antennas Propag. 14(3), 183–188 (2020)

    Article  Google Scholar 

  15. Limiti, E., et al.: Surface wave reduction in antenna arrays using metasurface inclusion for MIMO and SAR systems. Radio Sci. 54, 1067–1075 (2019)

    Article  Google Scholar 

  16. See, C.H., et al.: High-isolation leaky-wave array antenna based on CRLH metamaterial implemented on SIW with ±30° frequency beam-scanning capability at millimeter-waves. Electronics 8, 642–715 (2019)

    Article  Google Scholar 

  17. Pozar, D.M.; Schaubert, D.H.: Microstrip antennas: the analysis and design of microstrip antennas and arrays, p. 448. Wiley-IEEE Press, New Jersey (1995)

    Book  Google Scholar 

  18. Khalily, M., et al.: Mutual-coupling isolation using embedded metamaterial EM bandgap decoupling slab for densely packed array antennas. IEEE Access 7, 5182–51840 (2019)

    Google Scholar 

  19. Lee, J.Y.; Kim, S.H.; Jang, J.H.: Reduction of mutual coupling in planar multiple antenna by using 1-D EBG and SRR structures. IEEE Trans. Antennas Propag. 63(9), 4194–4198 (2015)

    Article  Google Scholar 

  20. Wei, K.; Li, J.Y.; Wang, L.; Xing, Z.J.; Xu, R.: Mutual coupling reduction by novel fractal defected ground structure bandgap filter. IEEE Trans. Antennas Propag. 64(10), 4328–4335 (2016)

    Article  MathSciNet  Google Scholar 

  21. Yu, Y.; Yi, L.; Liu, X.; Gu, Z.: Mutual coupling reduction of dual-frequency patch antenna arrays. ACES J. 31(9), 1092–1099 (2016)

    Google Scholar 

  22. Alibakhshikenari, M., et al.: Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading. IEEE Access 7, 23606–23614 (2019)

    Article  Google Scholar 

  23. Qamar, Z.; Park, H.-C.: Compact waveguided metamaterials for suppression of mustual coupling in microstrip array. Progress Electromagn Res 149, 183–192 (2014)

    Article  Google Scholar 

  24. Chan, H., et al.: Interaction between closely packed array antenna elements using metasurface for applications such as MIMO systems and synthetic aperture radars. Radio Sci. 53(11), 1368–1381 (2018)

    Article  Google Scholar 

  25. Yang, X.M.; Liu, X.G.; Zhou, X.Y.; Cui, T.J.: Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials. IEEE Antennas Wirel. Propag. Lett. 11, 389–391 (2012)

    Article  Google Scholar 

  26. Ali, A.H., et al.: Study on isolation improvement between closely packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures. IET Microw. Antennas Propag. 12(14), 2241–2247 (2018)

    Article  Google Scholar 

  27. Ghosh, J.; Ghosal, S.; Mitra, D.; BhadraChaudhuri, S.R.: Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator. Progress Electromag. Res. Lett. 59, 115–122 (2016)

    Article  Google Scholar 

  28. Sonkki, M.; Salonen, E.: Low mutual coupling between monopole antennas by using two λ/2 slots. IEEE Antennas Wirel. Propag. Lett. 9, 138–141 (2010)

    Article  Google Scholar 

  29. Zhang, S.; Pedersen, G.F.: Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas Wirel. Propag. Lett. 15, 166–169 (2016). https://doi.org/10.1109/LAWP.2015.2435992

    Article  Google Scholar 

  30. Farahani, H.S., et al.: Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate. IEEE Antennas Wirel. Propag. Lett. 9, 57–59 (2010)

    Article  Google Scholar 

  31. Yu, A.; Zhang, X.: A novel method to improve the performance of microstrip antenna arrays using a dumbbell EBG structure. IEEE Antennas Wirel. Propag. Lett. 2(1), 170–172 (2003)

    Google Scholar 

  32. Farsi, S., et al.: Mutual coupling reduction of planar antenna by using a simple microstrip u-section. IEEE Ant. and Wirel. Propag. Lett. 11, 1501–1503 (2012)

    Article  Google Scholar 

  33. Alsath, M.G., et al.: Implementation of slotted meander line resonators for isolation enhancement in microstrip patch antenna arrays. IEEE Ant. Wirel. Propag. Lett. 12, 15–18 (2013)

    Article  Google Scholar 

  34. Suwailam, M.M.B., et al.: Mutual coupling reduction between microstrip patch antennas using slotted-complementary split-ring resonators. IEEE Antennas Wirel. Propag. Lett. 9, 876–878 (2010)

    Article  Google Scholar 

  35. Shafique, M.F., et al.: Coupling suppression in densely packed microstrip arrays using metamaterial structure. Microw. Opt. Technol. Lett. 57(3), 759–763 (2015)

    Article  Google Scholar 

  36. Ghosh, J., et al.: Mutual coupling reduction between closely placed microstrip patch antenna using meander line resonator. Prog. Electromag. Res. Lett. 59, 115–122 (2016)

    Article  Google Scholar 

  37. Yang, Xu., et al.: Isolation enhancement in patch antenna array with fractal UC-EBG structure and cross slot. IEEE Antennas Wirel. Propag. Lett. 16, 2175–2178 (2017)

    Article  Google Scholar 

  38. Zhao, L., et al.: A high-pass antenna interference cancellation chip for mutual coupling reduction of antennas in contiguous frequency bands. IEEE Access 6, 38097–38105 (2018)

    Article  Google Scholar 

  39. Sadeghzadeh, R.A., et al.: Composite right - left-handed-based antenna with wide applications in very-high frequency - ultra-high frequency bands for radio transceivers. IET Microw. Antennas Propag. 9(15), 1713–1726 (2015)

    Article  MathSciNet  Google Scholar 

  40. Naser-Moghadasi, M., et al.: Bandwidth and radiation specifications enhancement of monopole antennas loaded with split ring resonators. IET Microw. Antennas Propag. 9(14), 1487–1496 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The author extends his appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research grant No (DSR-2021-02-0115).

Funding

The author extends his appreciation to the Deanship of Scientific Research at Jouf University for funding this work through research Grant No (DSR-2021–02-0115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayman A. Althuwayb.

Ethics declarations

Conflicts of interest

There is no conflicts of interest/competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Althuwayb, A.A. Low-Interacted Multiple Antenna Systems Based on Metasurface-Inspired Isolation Approach for MIMO Applications. Arab J Sci Eng 47, 2629–2638 (2022). https://doi.org/10.1007/s13369-021-05720-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05720-6

Keywords

Navigation