Skip to main content
Log in

A Multistage Cutting Tool Fault Diagnosis Algorithm for the Involute form Cutter Using Cutting Force and Vibration Signals Spectrum Imaging and Convolutional Neural Networks

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In a machining system, tool condition monitoring systems are required to get a high-quality product and to prevent the downtime of machine tools due to tool failures. For this purpose, tool condition monitoring systems have become very important during the years since the mechanical faults can cause high cost. This study introduces a multistage cutting tool fault diagnosis method to detect the presence and level of the involute form cutter faults on the by the cutting force and vibration signal analysis. Therefore, different fault levels (low, medium and high) were generated on the involute form cutter as a tool breakage. During the experiments, the cutting force, vibration and acoustic signals were gathered with three different feed rates for each fault level. The gathered signals were processed by a multistage signal processing algorithm developed in the MATLAB environment. As an initial step, the continuous wavelet transform of the obtained signals was taken and saved as an image by the developed algorithm. After that, a convolutional neural network model is trained and tested by using the obtained images. The developed algorithm firstly checks the presence of the cutting tool fault. Once the algorithm labels the cutting tool is damaged, it then checks the damage level of the cutting tool fault. It is observed from the results, cutting force analysis is sufficient for the detection of cutting tool fault. On the other hand, the cutting force signal analysis is insufficient to detect the damage level of the cutting tool. Therefore, the vibration signal analysis is required to detect the damage level of the cutting tool. Results prove that, by the vibration analysis, the developed algorithm could detect not only the presence of the damage on the cutting tool but also the damage level. The results of the algorithm for each stage and signal are given in the results section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Rizal, M.; Ghani, J.A.; Nuawi, M.Z.; Haron, C.H.C.: A review of sensor system and application in milling process for tool condition monitoring. Res. J. Appl. Sci. Eng. Technol. 7(10), 2083–2097 (2014). https://doi.org/10.19026/rjaset.7.502

    Article  Google Scholar 

  2. Yesilyurt, I.: End mill breakage detection using mean frequency analysis of scalogram. Int. J. Mach. Tool Manuf. 46(3–4), 450–458 (2006). https://doi.org/10.1016/j.ijmachtools.2005.03.014

    Article  Google Scholar 

  3. Oraby, S.E.; Hayhurs, D.R.: Tool life determination based on the measurement of wear and tool force ratio variation. Int. J. Mach. Tool Manuf. 44(12–13), 1261–1269 (2004). https://doi.org/10.1016/j.ijmachtools.2004.04.018

    Article  Google Scholar 

  4. Kim, D.H.; Thomas, J.Y.; Kim, T.J.Y.; Xinlin, W.X.; Kim, M.; Quan, Y.J.; Woo, O.J.; Min, S.H.; Kim, H.; Bhandari, B.; Yang, I.; Ahn, S.H.: Smart machining process using machine learning: a review and perspective on machining ındustry. Int. J. Precis. Eng. Manuf. Green Technol. 5(4), 555–568 (2018)

    Article  Google Scholar 

  5. Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design, 2nd edn. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  6. Movahhedy, M.; Gadala, M.S.; Altintas, Y.: Simulation of the orthogonal metal cutting process using an arbitrary Lagrangian–Eulerian finite-element method. J. Mater. Process. Technol. 103(2), 267–275 (2000). https://doi.org/10.1016/S0924-0136(00)00480-5

    Article  Google Scholar 

  7. Jared, B.H.; Dow, T.A.: Investigation of the direction of chip motion in diamond turning. Precis. Eng. 25(2), 155–164 (2001). https://doi.org/10.1016/S0141-6359(00)00070-2

    Article  Google Scholar 

  8. Dalpiaz, G.; Rubini, R.; D'Elia, G.: Advances in Condition Monitoring of Machinery in Non-Stationary Operations: Proceedings of the Third International Conference on Condition Monitoring of Machinery in Non-stationary Operations. Springer, Berlin, Heidelberg

  9. Wang, C.; Ghani, S.B.C.; Cheng, K.; Rawkoski, R.: Adaptive smart machining based on using constant cutting force and a smart cutting tool. Proc. İnst. Mech. Eng. B J. Eng. 227(2), 249–253 (2018)

    Article  Google Scholar 

  10. Cheng, K.: Machining dynamics: fundamentals, applications and practices. Springer, London (2008)

    Google Scholar 

  11. Ning Li, N.; Chen, Y.; Kong, D.; Tan, S.: Force-based tool condition monitoring for turning process using v-support vector regression. Int. J. Adv. Manuf. Technol. 91, 351–361 (2016). https://doi.org/10.1007/s00170-016-9735-5

    Article  Google Scholar 

  12. Xiankun, L.; Bo, Z.; Lin, Z.: Sequential spindle current-based tool condition monitoring with support vector classifier for milling process. Int. J. Adv. Manuf. Technol. 92, 3319–3328 (2017). https://doi.org/10.1007/s00170-017-0396-9

    Article  Google Scholar 

  13. Aghazadeh, F.; Tahan, A.; Thomas, M.: Tool condition monitoring using spectral subtraction and convolutional neural networks in milling process. Int. J. Adv. Manuf. Technol. 98, 3217–3227 (2018). https://doi.org/10.1007/s00170-018-2420-0

    Article  Google Scholar 

  14. Kaya, B.; Oysu, C.; Ertunc, M.E.: Force-torque based on-line tool wear estimation system for CNC milling of Inconel 718 using neural network. Adv. Eng. Softw. 42(3), 76–84 (2010). https://doi.org/10.1016/j.advengsoft.2010.12.002

    Article  Google Scholar 

  15. Madhusudana, C.K.; Kumar, H.; Narendranath, S.: Face milling tool condition monitoring using sound signal. Int. J. Syst. Ass Eng. Man. 8, 1643–1653 (2017). https://doi.org/10.1007/s13198-017-0637-1

    Article  Google Scholar 

  16. Hsueh, Y.W.; Yang, C.Y.: Prediction of tool breakage in face milling using support vector machine. Int. J. Adv. Manuf. Technol. 37(9), 872–880 (2008). https://doi.org/10.1007/s00170-007-1034-8

    Article  Google Scholar 

  17. Huang, P.B.; Ma, C.C.; Kuo, C.H.: A PNN self-learning tool breakage detection system in end milling operations. Appl. Soft. Comput. 37, 114–124 (2015). https://doi.org/10.1016/j.asoc.2015.08.019

    Article  Google Scholar 

  18. Elangovan, M.; Sugumaran, V.; Ramachandran, K.I.; Ravikumar, S.: Effect of SVM kernel functions on classification of vibration signals of a single point cutting tool. Expert. Syst. Appl. 38(12), 15202–15207 (2011). https://doi.org/10.1016/j.eswa.2011.05.081

    Article  Google Scholar 

  19. Cho, S.; Asfour, S.; Onar, A.; Kaundinya, N.: Tool breakage detection using support vector machine learning in a milling process. Int. J. Mach. Tool. Manuf. 45(3), 241–249 (2005). https://doi.org/10.1016/j.ijmachtools.2004.08.016

    Article  Google Scholar 

  20. Kothuru, A.; Nooka, S.P.; Liu, R.: Application of audible sound signals for tool wear monitoring using machine learning techniques in end milling. Int. J. Adv. Manuf. Technol. 95, 3797–3808 (2017). https://doi.org/10.1007/s00170-017-1460-1

    Article  Google Scholar 

  21. Ong, P.; Lee, W.K.; Lau, R.J.H.: Tool condition monitoring in CNC end milling using wavelet neural network based on machine vision. Int. J. Adv. Manuf. Technol. 104, 1369–1379 (2019). https://doi.org/10.1007/s00170-019-04020-6

    Article  Google Scholar 

  22. Al-Habaibeh, A.; Gindy, N.: Self-learning algorithm for automated design of condition monitoring systems for milling operations. Int. J. Adv. Manuf. Technol. 18, 448–459 (2001). https://doi.org/10.1007/s001700170054

    Article  Google Scholar 

  23. Yesilyurt, I.; Gursoy, H.: Modeling and experimental verification of cutting forces in gear tooth cutting. Mach. Sci. Technol. 22(1), 30–47 (2018). https://doi.org/10.1080/10910344.2017.1336625

    Article  Google Scholar 

  24. Wei, Z.; Xin, L.; Chang, L.; Fanzheng, X.; Yefeng, H.: An STFT-LSTM System For P-Wave Identification. IEEE Geosci. Remote Sens. Lett. 17(1), 519–523 (2019). https://doi.org/10.1109/LGRS.2019.2922536

    Article  Google Scholar 

  25. Jingshan, H.; Bingiang, C.; Bin, Y.; Wangpeng, H.: ECG arrhythmia classification using STFT-based spectrogram and convolutional neural network. IEEE Access 7, 92871–92880 (2019). https://doi.org/10.1109/ACCESS.2019.2928017

    Article  Google Scholar 

  26. Xiaogian, M.; Xiaolong, C.; Ningyuan, S.; Jian, G.: Motion classification for radar moving target via STFT and convolution neural network. IET J. Eng. 19(10), 6287–6290 (2019). https://doi.org/10.1049/joe.2019.0179

    Article  Google Scholar 

  27. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel R.E.; Baird, H.S.: Constrained Neural Network for Unconstrained Handwritten Digit Recognition, Frontiers in Handwriting Recognition, CENPARMI. Concordia University (1990)

Download references

Acknowledgements

The authors thank the Prof. Dr. Isa Yesilyurt for the valuable help at the design of the experimental setup and gathering the cutting force data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habibe Gursoy Demir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucukyildiz, G., Demir, H.G. A Multistage Cutting Tool Fault Diagnosis Algorithm for the Involute form Cutter Using Cutting Force and Vibration Signals Spectrum Imaging and Convolutional Neural Networks. Arab J Sci Eng 46, 11819–11833 (2021). https://doi.org/10.1007/s13369-021-05709-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05709-1

Keywords

Navigation