Skip to main content

Advertisement

Log in

Single-Phase Generalized Switched-Capacitor Multilevel Inverter Using Reduced Number of Power Semiconductor Components with Voltage Boosting Ability

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This research paper proposes a new switched-capacitor topology for the multilevel inverter. The structure has two isolated DC power supplies and a capacitor. Since the topology uses only one capacitor, it eliminates the problem of voltage balancing across the capacitors. This structure produces 13-level output voltage across the load terminals. The structure can be extended using derived generalized equations. A comparative analysis shows the number of components used with respect to other 13-level inverters existing in the literature. The power loss and efficiency of the topology are evaluated and experimentally verified. Moreover, the output voltage and current waveform for the topology is tested for pure resistive, inductive load, the impact of change in modulation index, and impact of the sudden change in load and is simulated and later verified experimentally using a dSPACE-1104 real-time controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vijeh, M.; Rezanejad, M.; Samadaei, E.; Bertilsson, K.: A general review of multilevel inverters based on main submodules : structural point of view. IEEE Trans. Power Electron. 34(10), 9479–9502 (2019)

    Article  Google Scholar 

  2. Anand, V.; Singh, V.; Anand V.: Design and analysis of MLI with reduced number of switches and PV panel as a source. In: IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS), Bhubaneswar, India, 2019, pp. 308–312, (2019)

  3. Mohamed Ali, J.S.; Siddique, M.D.; Mekhilef, S.; Yang, Y.; Siwakoti, Y.; Blaabjerg, F.: Experimental validation of nine-level switched-capacitor inverter topology with high voltage gain. Int. J. Circ. Theor. Appl. (2021). https://doi.org/10.1002/cta.3004

    Article  Google Scholar 

  4. Jain, P.; Pahlevaninezhad, M.; Pan, S.; Drobnik, J.: A review of high-frequency power distribution systems: for space, telecommunication, and computer applications. IEEE Trans. Power Electron. 29(8), 3852–3863 (2014)

    Article  Google Scholar 

  5. Anand, V.; Singh, V.: Implementation of cascaded asymmetrical multilevel inverter for renewable energy integration. Int. J. Circ. Theor. Appl. (2021). https://doi.org/10.1002/cta.2944

    Article  Google Scholar 

  6. Bakas, P., et al.: Review of hybrid multilevel converter topologies utilizing thyristors for HVDC applications. IEEE Trans. Power Electron. 36(1), 174–190 (2021). https://doi.org/10.1109/TPEL.2020.2997961

    Article  Google Scholar 

  7. Hosseinpour, M.; Seifi, A.; Dejamkhooy, A.; Sedaghati, F.: Switch count reduced structure for symmetric bi-directional multilevel inverter based on switch-diode-source cells. IET Power Electron. 13(8), 1675–1686 (2020)

    Article  Google Scholar 

  8. Almakhles, D.; Sathik, M.J.; Sivakumar, S.; Bhasker, M.S.; Sandeep, N.: Switched capacitor based 13L inverter topology for high-frequency AC power distribution system. IEEE J. Emerg. Sel. Top. Power Electron. (2020). https://doi.org/10.1109/JESTPE.2020.3043488

    Article  Google Scholar 

  9. Samadaei, E.; Gholamian, S.A.; Sheikholeslami, A.; Adabi, J.: An envelope type (E-Type) module: asymmetric multilevel inverters with reduced components. IEEE Trans. Ind. Electron. 63(11), 7148–7156 (2016)

    Article  Google Scholar 

  10. Barzegarkhoo, R.; Kojabadi, H.M.; Zamiry, E.; Vosoughi, N.; Chang, L.: Generalized structure for a single phase switched-capacitor multilevel inverter using a new multiple dc link producer with reduced number of switches. IEEE Trans. Power Electron. 31(8), 5604–5617 (2016)

    Article  Google Scholar 

  11. Panda, K.P.; Bana, P.R.; Panda, G.: A switched-capacitor self-balanced high-gain multilevel inverter employing a single DC source. IEEE Trans. Circuits Syst. II Exp. Br. 67(12), 3192–3196 (2020)

    Article  Google Scholar 

  12. Anand, V.; Singh, V.: Compact symmetrical and asymmetrical multilevel inverter with reduced switches. Int. Trans. Electr. Energ. Syst. 30, e12458 (2020)

    Google Scholar 

  13. Fong, Y.C.; Member, S.; Raman, S.R.; Member, S.; Ye, Y.: Generalized topology of a hybrid switched-capacitor multilevel inverter for high-frequency AC power distribution. IEEE J. Emerg. Sel. Top. Power Electron. 8(3), 2886–2897 (2020)

    Article  Google Scholar 

  14. Sandeep, N.; Ali, J.S.M.; Yaragatti, U.R.; Vijayakumar, K.: Switched-capacitor-based quadruple-boost nine-level inverter. IEEE Trans. Power Electron. 34(8), 7147–7150 (2019)

    Article  Google Scholar 

  15. Panda, K.P.; Bana, P.R.; Panda, G.: A Reduced Device Count Single DC Hybrid Switched-Capacitor Self-Balanced Inverter. IEEE Trans. Circuits and Syst. Exp. Br. (2020). https://doi.org/10.1109/tcsii.2020.3018333

    Article  Google Scholar 

  16. Saeedian, M.; Hosseini, S.M.; Adabi, J.: Step-up switched-capacitor module for cascaded MLI topologies. IET Power Electron. 11(7), 1286–1296 (2018)

    Article  Google Scholar 

  17. Ye, Y.; Cheng, K.W.E.; Liu, J.; Ding, K.: A step-up switched-capacitor multilevel inverter with self-voltage balancing. IEEE Trans. Ind. Electron. 61(12), 6672–6680 (2014)

    Article  Google Scholar 

  18. Babaei, E.; Gowgani, S.S.: Hybrid multilevel inverter using switched capacitor units. IEEE Trans. Ind. Electron. 61(9), 4614–4621 (2013)

    Article  Google Scholar 

  19. Peng, W.; Ni, Q.; Qiu, X.; Ye, Y.: Seven-level inverter with self-balanced switched-capacitor and its cascaded extension. IEEE Trans. Power Electron. 34(12), 11889–11896 (2019)

    Article  Google Scholar 

  20. Babaei, E.; Kangarlu, M.F.; Sabahi, M.: Extended multilevel converters: an attempt to reduce the number of independent DC voltage sources in cascaded multilevel converters. IET Power Electron. 7(1), 157–166 (2014)

    Article  Google Scholar 

  21. Samadaei, E.; Kaviani, M.; Bertilsson, K.: A 13-levels module (K-Type) with two DC sources for multilevel inverters. IEEE Trans. Ind. Electron. 66(7), 5186–5196 (2019)

    Article  Google Scholar 

  22. Raman, S.R.; Cheng, K.W.E.; Ye, Y.: Multi-input switched-capacitor multilevel inverter for high-frequency AC power distribution. IEEE Trans. Power Electron. 33(7), 5937–5948 (2018)

    Article  Google Scholar 

  23. Ramaiah, S.; Lakshminarasamma, N.; Mishra, M.K.: Multisource switched capacitor based boost multilevel inverter for photovoltaic-based systems. IEEE Trans. Power Electron. 35(3), 2558–2570 (2020)

    Article  Google Scholar 

  24. Cengiz, K.: Very high step-up converter with switched capacitor and coupled inductor. Arab. J. Sci. Eng. 45(3), 1777–1783 (2020)

    Article  Google Scholar 

  25. Routray, A.; Shiluveru, K.; Singh, A.; Singh, R.K.; Mahanty, R.: Reduced voltage stress thirteen-level extendable switched capacitor multilevel inverter. IEEE Energy Conv. Cong. Expos. (2019). https://doi.org/10.1109/ECCE.2019.8912869

    Article  Google Scholar 

  26. Roy, T.; Sadhu, P.K.: A step-up multilevel inverter topology using novel switched capacitor converters with reduced components. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.2965458

    Article  Google Scholar 

  27. Rahman, H.; Yaqoob, M.: cascaded hybrid multi-level inverter for selective harmonics elimination. Iran. J. Sci. Technol. Trans. Electr. Eng. 42, 135–148 (2018)

    Article  Google Scholar 

  28. Taghvaie, A.; Adabi, J.; Rezanejad, M.: A self-balanced step-up multilevel inverter based on switched-capacitor structure. IEEE Trans. Power Electron. 33(1), 199–209 (2017)

    Article  Google Scholar 

  29. Liu, J.; Zhu, X.; Zeng, J.: A seven-level inverter with self-balancing and low voltage stress. IEEE J. Emer. Sel. Top. Power Electron. 8(1), 685–696 (2018)

    Article  Google Scholar 

  30. Jahan, H.K.; Abapour, M.; Zare, K.: Switched-capacitor-based single-source cascaded H-bridge multilevel inverter featuring boosting ability. IEEE Trans. Power Electron. 34(2), 1113–1124 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varsha Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neti, S.S., Anand, V. & Singh, V. Single-Phase Generalized Switched-Capacitor Multilevel Inverter Using Reduced Number of Power Semiconductor Components with Voltage Boosting Ability. Arab J Sci Eng 47, 2613–2627 (2022). https://doi.org/10.1007/s13369-021-05701-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05701-9

Keywords

Navigation