Skip to main content
Log in

Dopamine Drug Adsorption on the Aluminum Nitride Single-Wall Nanotube: Ab initio Study

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The main challenge war focused on the detection of dopamine drug using a type of AlN nanotube sensor through density functional theory (DFT) calculations. The interaction behavior of dopamine (DA) and aluminum nitride single-wall nanotube (AlNNT) was investigated by using DFT calculation. For the most stable complex, the energy of adsorption of DA on the aluminum nitride single-wall nanotube’s surface was − 17.31 kcal/mol. DA adsorbs through an electrostatic mechanism on the AlNNT. The electrical conductivity of the nanotube has improved significantly by around 28.78 percent through the DA molecules’ absorption on the surface of nanotube. This increase can be used as a signal to detect a drug. Therefore, after DA drug adsorption, the AlNNT work function is reduced from 4.56 to 3.25 eV. Thus, the AlNNT can be both the electronic and work function-type sensor for DA detection. Compared with the gas phase, AlNNT-DA has more stability in aqueous media according to polarizable continuum model (PCM). Eventually, our results also uncovered that, in the presence of environmental contaminants, the AlNNT can selectively recognize the DA molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou, C.; Li, S.; Zhu, W.; Pang, H.; Ma, H.: A sensor of a polyoxometalate and Au–Pd alloy for simultaneously detection of dopamine and ascorbic acid. Electrochim. Acta 113, 454–463 (2013)

    Article  Google Scholar 

  2. Liu, G.; Ren, G.; Zhao, L.; Cheng, L.; Wang, C.; Sun, B.: Antibacterial activity and mechanism of bifidocin A against Listeria monocytogenes. Food Control 73, 854–861 (2017)

    Article  Google Scholar 

  3. Jiang, D.; Chen, F.-X.; Zhou, H.; Lu, Y.-Y.; Tan, H.; Yu, S.-J., et al.: Bioenergetic crosstalk between mesenchymal stem cells and various ocular cells through the intercellular trafficking of mitochondria. Theranostics 10, 7260 (2020)

    Article  Google Scholar 

  4. Pan, D.; Xia, X.-X.; Zhou, H.; Jin, S.-Q.; Lu, Y.-Y.; Liu, H., et al.: COCO enhances the efficiency of photoreceptor precursor differentiation in early human embryonic stem cell-derived retinal organoids. Stem Cell Res. Ther. 11, 1–12 (2020)

    Article  Google Scholar 

  5. Bas, S.Z.; Cummins, C.; Selkirk, A.; Borah, D.; Ozmen, M.; Morris, M.A.: A novel electrochemical sensor based on metal ion infiltrated block copolymer thin films for sensitive and selective determination of dopamine. ACS Appl. Nano Mater. 2, 7311–7318 (2019)

    Article  Google Scholar 

  6. Szopa, J.; Wilczyński, G.; Fiehn, O.; Wenczel, A.; Willmitzer, L.: Identification and quantification of catecholamines in potato plants (Solanum tuberosum) by GC–MS. Phytochemistry 58, 315–320 (2001)

    Article  Google Scholar 

  7. Myneni, V.R.; Kanidarapu, N.R.; Vangalapati, M.: Methylene blue adsorption by magnesium oxide nanoparticles immobilized with chitosan (CS-MgONP): response surface methodology, isotherm, kinetics and thermodynamic studies. Iran. J. Chem. Chem. Eng. 39, 29–42 (2020)

    Google Scholar 

  8. Kazemi, M.; Zarandi, M.; Zand Monfared, M.R.: Preparation of permanent red 24 nanoparticle by oil in water microemulsion. Iran. J. Chem. Chem. Eng. 39, 43–49 (2020)

    Google Scholar 

  9. Kalhor, M.; Seyedzade, Z.: One-step synthesis of dicyano imidazoles by (NH4)2Ce(NO3)6/HNO3 promoted oxidative cyclocondensation of an aldehyde and 2,3-diaminomaleonitrile. Iran. J. Chem. Chem. Eng. 39, 1–8 (2020)

    Google Scholar 

  10. Munir, S.; Khan, B.; Abdullah, A.; Khan, S.; Naz, S.; Wali, Q.; Tabbasam, N.: Computational investigations of a novel charge transfer complex for potential application in dye-sensitized solar cells. Iran. J. Chem. Chem. Eng. 39, 19–27 (2020)

    Google Scholar 

  11. Zhang, H.-M.; Ma, L.; Li, J.-L.; Zhang, J.-T.; Liu, M.; Zhao, J.-Y.; Zhao, L.: Numerical simulation of reaction mechanism of ethane pyrolysis to form benzene and styrene. Iran. J. Chem. Chem. Eng. 39, 9–18 (2020)

    Google Scholar 

  12. Zhu, S.; Wang, X.; Zheng, Z.; Zhao, X.-E.; Bai, Y.; Liu, H.: Synchronous measuring of triptolide changes in rat brain and blood and its application to a comparative pharmacokinetic study in normal and Alzheimer’s disease rats. J. Pharm. Biomed. Anal. 185, 113263 (2020)

    Article  Google Scholar 

  13. Zhu, S.; Zheng, Z.; Peng, H.; Sun, J.; Zhao, X.-E.; Liu, H.: Quadruplex stable isotope derivatization strategy for the determination of panaxadiol and panaxatriol in foodstuffs and medicinal materials using ultra high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. A 1616, 460794 (2020)

    Article  Google Scholar 

  14. Jiang, Q.; Jin, S.; Jiang, Y.; Liao, M.; Feng, R.; Zhang, L., et al.: Alzheimer’s disease variants with the genome-wide significance are significantly enriched in immune pathways and active in immune cells. Mol. Neurobiol. 54, 594–600 (2017)

    Article  Google Scholar 

  15. Zou, Q.; Xing, P.; Wei, L.; Liu, B.: Gene2vec: gene subsequence embedding for prediction of mammalian N6-methyladenosine sites from mRNA. RNA 25, 205–218 (2019)

    Article  Google Scholar 

  16. Pashangpour, M.; Peyghan, A.A.: Adsorption of carbon monoxide on the pristine, B-and Al-doped C 3 N nanosheets. J. Mol. Model. 21, 116 (2015)

    Article  Google Scholar 

  17. Rivelino, R.; Dos Santos, R.B.; de Brito Mota, F.; Gueorguiev, G.K.: Conformational effects on structure, electron states, and Raman scattering properties of linear carbon chains terminated by graphene-like pieces. J. Phys. Chem. C 114, 16367–16372 (2010)

    Article  Google Scholar 

  18. Parandin, F.; Jalilian, J.; Jalilian, J.: Tuning of electronic and optical properties in ZnX (X= O, S, Se and Te) monolayer: hybrid functional calculations. Chem. Rev. Lett. 2, 76–83 (2019)

    Google Scholar 

  19. Yang, D.; Wang, S.; Zhang, Q.; Sellin, P.; Chen, G.: Thermal and electrical transport in multi-walled carbon nanotubes. Phys. Lett. A 329, 207–213 (2004)

    Article  Google Scholar 

  20. Shen, C.L.; Lou, Q.; Zang, J.H.; Liu, K.K.; Qu, S.N.; Dong, L., et al.: Near-infrared chemiluminescent carbon nanodots and their application in reactive oxygen species bioimaging. Adv. Sci. 7, 1903525 (2020)

    Article  Google Scholar 

  21. Xiang, W.; Chang, J.; Qu, R.; Albasher, G.; Wang, Z.; Zhou, D., et al.: Transformation of bromophenols by aqueous chlorination and exploration of main reaction mechanisms. Chemosphere 265, 129112 (2020)

    Article  Google Scholar 

  22. Gleiter, H.: Nanostructured materials: basic concepts and microstructure. Acta Mater. 48, 1–29 (2000)

    Article  Google Scholar 

  23. Wang, Y.-C.; Huang, K.; Lai, X.; Shi, Z.; Liu, J.-B.; Qiu, G.: Radical bromination-induced ipso cyclization–ortho cyclization sequence of N-hydroxylethyl-N-arylpropiolamides. Org. Biomol. Chem. 19, 1940–1944 (2021)

    Article  Google Scholar 

  24. Qi, Y.; Wei, J.; Qu, R.; Al-Basher, G.; Pan, X.; Dar, A.A., et al.: Mixed oxidation of aqueous nonylphenol and triclosan by thermally activated persulfate: Reaction kinetics and formation of co-oligomerization products. Chem. Eng. J. 403, 126396 (2021)

    Article  Google Scholar 

  25. Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  26. Wang, Z.; Huang, Z.; Brosnahan, J.T.; Zhang, S.; Guo, Y.; Guo, Y., et al.: Ru/CeO2 catalyst with optimized CeO2 support morphology and surface facets for propane combustion. Environ. Sci. Technol. 53, 5349–5358 (2019)

    Article  Google Scholar 

  27. Yang, X.; Li, Q.; Lu, E.; Wang, Z.; Gong, X.; Yu, Z., et al.: Taming the stability of Pd active phases through a compartmentalizing strategy toward nanostructured catalyst supports. Nat. Commun. 10, 1–9 (2019)

    Google Scholar 

  28. Li, J.; Liao, J.; Essawy, H.; Zhang, J.; Li, T.; Wu, Z., et al.: Preparation and characterization of novel cellular/nonporous foam structures derived from tannin furanic resin. Ind. Crops Prod. 162, 113264 (2021)

    Article  Google Scholar 

  29. Chopra, N.G.; Luyken, R.; Cherrey, K.; Crespi, V.H.; Cohen, M.L.; Louie, S.G., et al.: Boron nitride nanotubes. Science 269, 966–967 (1995)

    Article  Google Scholar 

  30. Tondare, V.; Balasubramanian, C.; Shende, S.; Joag, D.; Godbole, V.; Bhoraskar, S., et al.: Field emission from open ended aluminum nitride nanotubes. Appl. Phys. Lett. 80, 4813–4815 (2002)

    Article  Google Scholar 

  31. Chen, X.; Ma, J.; Hu, Z.; Wu, Q.; Chen, Y.: AlN nanotube: round or faceted? J. Am. Chem. Soc. 127, 7982–7983 (2005)

    Article  Google Scholar 

  32. Wu, Q.; Hu, Z.; Wang, X.; Lu, Y.; Chen, X.; Xu, H., et al.: Synthesis and characterization of faceted hexagonal aluminum nitride nanotubes. J. Am. Chem. Soc. 125, 10176–10177 (2003)

    Article  Google Scholar 

  33. Shojaei, Z.; Iravani, E.; Moosavian, S.M.A.; Torab Mostaedi, M.: Lead adsorption onto surface modified nano titania: kinetic and thermodynamic studies. Iran. J. Chem. Chem. Eng. 39, 105–119 (2020)

    Google Scholar 

  34. Kang, D.; Zhirnov, V.; Sanwald, R.; Hren, J.; Cuomo, J.: Field emission from ultrathin coatings of AlN on Mo emitters. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenomena 19, 50–54 (2001)

    Article  Google Scholar 

  35. Dbik, A.; Bentahar, S.; El Messaoudi, N.; El khomri, M.; Lacherai, A.: Removal of methylene blue from aqueous solution by tunics of the corm of the saffron. Iran. J. Chem. Chem. Eng. 39, 95–104 (2020)

    Google Scholar 

  36. Xu, C.; Xue, L.; Yin, C.; Wang, G.: Formation and photoluminescence properties of AlN nanowires. Physica Status Solidi (a) 198, 329–335 (2003)

    Article  Google Scholar 

  37. Anbazhagan, S.; Thiruvengatam, V.; Kulanthai, K.: Adaptive neuro-fuzzy inference system and artificial neural network modeling for the adsorption of methylene blue by novel adsorbent in a fixed - bed column method. Iran. J. Chem. Chem. Eng. 39, 75–93 (2020)

    Google Scholar 

  38. Haber, J.A.; Gibbons, P.C.; Buhro, W.E.: Morphological control of nanocrystalline aluminum nitride: Aluminum chloride-assisted nanowhisker growth. J. Am. Chem. Soc. 119, 5455–5456 (1997)

    Article  Google Scholar 

  39. Kassaee, M.Z.; Khorshidvand, N.: Study of electronic effects on normal vs. abnormal Tetrazol-5-ylidenes at DFT. Iran. J. Chem. Chem. Eng. 39, 63–74 (2020)

    Google Scholar 

  40. Tang, Y.; Cong, H.; Zhao, Z.; Cheng, H.: Field emission from AlN nanorod array. Appl. Phys. Lett. 86, 153104 (2005)

    Article  Google Scholar 

  41. Issabayeva, G.; Yap, N.J.; Ajeel, M.; Hussin, F.; Aroua, M.K.: Removal of zinc from wastewater through the reduction potential determination and electrodeposition using adsorption-desorption solutions. Iran. J. Chem. Chem. Eng. 39, 121–130 (2020)

    Google Scholar 

  42. Liu, C.; Hu, Z.; Wu, Q.; Wang, X.; Chen, Y.; Lin, W., et al.: Synthesis and field emission properties of aluminum nitride nanocones. Appl. Surf. Sci. 251, 220–224 (2005)

    Article  Google Scholar 

  43. Goh, W.; Patriarche, G.; Bonanno, P.; Gautier, S.; Moudakir, T.; Abid, M., et al.: Structural and optical properties of nanodots, nanowires, and multi-quantum wells of III-nitride grown by MOVPE nano-selective area growth. J. Cryst. Growth 315, 160–163 (2011)

    Article  Google Scholar 

  44. Beheshtian, J.; Peyghan, A.A.; Bagheri, Z.: Selective function of Al12N12 nano-cage towards NO and CO molecules. Comput. Mater. Sci. 62, 71–74 (2012)

    Article  Google Scholar 

  45. Gharibzadeh, F.; Vessally, E.; Edjlali, L.; Es haghi, M.; Mohammadi, R.: A DFT study on sumanene, corannulene and nanosheet as the anodes in Li−ion Batteries. Iran. J. Chem. Chem. Eng. 39, 51–62 (2020)

    Google Scholar 

  46. Kamari, E.; Hajizadeh, A.A.; Kamali, M.R.: Experimental investigation and estimation of light hydrocarbons gas-liquid equilibrium ratio in gas condensate reservoirs through artificial neural networks. Iran. J. Chem. Chem. Eng. 39, 163–172 (2020)

    Google Scholar 

  47. Akbari, A.; Fakhri, H.: Three novel sets of Cs2H[PW4Mo8O40] based on various supports: insight into comparative evaluation in oxidative desulfurization. Iran. J. Chem. Chem. Eng. 39, 149–161 (2020)

    Google Scholar 

  48. Kakanakova-Georgieva, A.; Gueorguiev, G.K.; Yakimova, R.; Janzén, E.: Effect of impurity incorporation on crystallization in AlN sublimation epitaxy. J. Appl. Phys. 96, 5293–5297 (2004)

    Article  Google Scholar 

  49. Kenza, A.; Bensmaili, A.; Bouafia-Chergui, S.; Kadmi, Y.: New activated carbon from wormwood as efficient adsorbent of cationic dye in aqueous solution. Iran. J. Chem. Chem. Eng. 39, 137–148 (2020)

    Google Scholar 

  50. Amooey, A.A.: A new film diffusion controlling kinetic model for adsorption at the solid/solution interface. Iran. J. Chem. Chem. Eng. 39, 131–136 (2020)

    Google Scholar 

  51. Yu, Y.-X.: A dispersion-corrected DFT study on adsorption of battery active materials anthraquinone and its derivatives on monolayer graphene and h-BN. J. Mater. Chem. A 2, 8910–8917 (2014)

    Article  Google Scholar 

  52. Peyghan, A.A.; Rastegar, S.F.; Hadipour, N.L.: DFT study of NH3 adsorption on pristine, Ni-and Si-doped graphynes. Phys. Lett. A 378, 2184–2190 (2014)

    Article  Google Scholar 

  53. Pereira, L.; Dos Santos, L.; Fávero, P.; Martin, A.: RM1 semi empirical and DFT: B3LYP/3-21G theoretical insights on the confocal Raman experimental observations in qualitative water content of the skin dermis of healthy young, healthy elderly and diabetic elderly women’s. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 149, 1009–1019 (2015)

    Article  Google Scholar 

  54. Perdew, J.P.; Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244 (1992)

    Article  Google Scholar 

  55. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648–5652 (1993)

    Article  Google Scholar 

  56. Gholizadeh, R.; Yu, Y.-X.: N2O+ CO reaction over Si-and Se-doped graphenes: an ab initio DFT study. Appl. Surf. Sci. 357, 1187–1195 (2015)

    Article  Google Scholar 

  57. Chigo-Anota, E.; Escobedo-Morales, A.; Hernández-Cocoletzi, H.; y López, J.L.: Nitric oxide adsorption on non-stoichiometric boron nitride fullerene: Structural stability, physicochemistry and drug delivery perspectives. Physica E Low-Dimens. Syst. Nanostruct. 74, 538–543 (2015)

    Article  Google Scholar 

  58. Singla, P.; Riyaz, M.; Singhal, S.; Goel, N.: Theoretical study of adsorption of amino acids on graphene and BN sheet in gas and aqueous phase with empirical DFT dispersion correction. Phys. Chem. Chem. Phys. 18, 5597–5604 (2016)

    Article  Google Scholar 

  59. Hadipour, N.L.; Ahmadi Peyghan, A.; Soleymanabadi, H.: Theoretical study on the Al-doped ZnO nanoclusters for CO chemical sensors. J. Phys. Chem. C 119, 6398–6404 (2015)

    Article  Google Scholar 

  60. Weinhold, F.; Landis, C.R.: Natural bond orbitals and extensions of localized bonding concepts. Chem. Educ. Res. Pract. 2, 91–104 (2001)

    Article  Google Scholar 

  61. Richardson, O.: Electron emission from metals as a function of temperature. Phys. Rev. 23, 153 (1924)

    Article  Google Scholar 

  62. Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J.: Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem. Phys. Lett. 255, 327–335 (1996)

    Article  Google Scholar 

  63. Li, J.; Lu, Y.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M.: Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 3, 929–933 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Hassanpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanpour, A., Zamanfar, M., Ebrahimiasl, S. et al. Dopamine Drug Adsorption on the Aluminum Nitride Single-Wall Nanotube: Ab initio Study. Arab J Sci Eng 47, 477–484 (2022). https://doi.org/10.1007/s13369-021-05678-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05678-5

Keywords

Navigation