Skip to main content
Log in

Quantum Algorithm to Identify Division Property of a Multiset

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Division property-based integral attack is the generalization of integral property developed by blending saturation attack and higher-order differential attack. This attack is considered as a chosen-plaintext attack because the cryptanalyst generates a multiset of plaintext which possesses a certain division property. However, in real-world applications, it is required to find the division property of a given multiset which turns the attack into a known-plaintext attack. The problem, finding the division property of a given multiset \(\mathbb {X}\) of size \(|\mathbb {X}|\) with each element of n-bit, when solved on a classical computer has the time complexity of \(O(n2^n|\mathbb {X}|)\) (fixed in both average and worst cases). In this paper, a better and comparable algorithm using quantum computing is presented along with its quantum oracle designs that can find the correct division property of a multiset in the average case time complexity of \(O \left( \log (n)2^n\sqrt{|\mathbb {X}|} \right) \) and worst case time complexity of \(O\left( \log (n) 2^n|\mathbb {X}| \right) \) using \(\left( n + \lceil \log |\mathbb {X}|\rceil + p \right) \)-qubits, where p are the precision qubits required by the quantum counting subroutine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Knudsen, L.; Wagner, D.: Integral cryptanalysis. In: Fast Software Encryption (FSE 2002), pp. 112–127 (2002)

  2. Yeom, Y.: Integral cryptanalysis and higher order differential attack. Trends Math. 8(1), 101–118 (2005)

    Google Scholar 

  3. Daemen, J.; Knudsen, L.; Rijmen, V.: The block cipher square. In: Fast Software Encryption (FSE 1997), pp. 149–165 (1997)

  4. Lucks, S.: the saturation attack – a bait for twofish. In: Fast Software Encryption (FSE 2001), pp. 1–15 (2001)

  5. Biryukov, A.; Shamir, A.: Structural cryptanalysis of SASAS. Adv. Cryptol. EUROCRYPT 2001, 395–405 (2001)

    MATH  Google Scholar 

  6. Lai, X.: Higher order derivatives and differential cryptanalysis. Kluw. Commun. 276, 227–233 (1994)

    MATH  Google Scholar 

  7. Knudsen, L.: Truncated and higher order differentials. In: Fast Software Encryption (FSE 1994), pp. 196–211 (1994)

  8. Todo, Y.: Structural evaluation by generalized integral property. Adv. Cryptol. EUROCRYPT 2015, 287–314 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Todo, Y.: Integral cryptanalysis of full MISTY1. J. Cryptol. 30, 920–959 (2017)

    Article  MathSciNet  Google Scholar 

  10. Todo, Y.; Morii, M.: Bit-based division property and application to simon family. In: Fast software encryption (FSE 2016), pp. 357–377 (2016)

  11. Boura, C.; Canteaut, A.: Another view of the division property. Adv. Cryptol. CRYPTO 2016, 654–682 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Zhou, Q.; Lu, S.; Zhang, Z.; Sun, J.: Quantum differential cryptanalysis. Quantum Inf. Process. 14, 2101–2109 (2015)

    Article  Google Scholar 

  13. Kaplan, M.; Leurent, G.; Leverrier, A.; Naya-Plasencia, M.: Quantum differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016, 71–94 (2016)

    Article  Google Scholar 

  14. Kaplan, M.; Leurent, G.; Leverrier, A.; Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. Adv. Cryptol. CRYPTO 2016, 207–237 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Xie, H.; Yang, L.: arXiv:1712.06997 [quant-ph] (2018)

  16. Santoli, T.; Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryptographic primitives. Qauntum Inf. Comput. 17(1–2), 65–78 (2017)

    MathSciNet  Google Scholar 

  17. Xie, H.; Yang, L.: Using Bernstein–Vazirani algorithm to attack block ciphers. Design Code Cryptogr. 87, 1161–1182 (2019)

    Article  MathSciNet  Google Scholar 

  18. Bonnetain, X.; Naya-Plasencia, M.; Schrottenloher, A.: Quantum security analysis of AES. IACR Tran. Symmetric Cryptol. 2019, 55–93 (2019)

    Article  Google Scholar 

  19. Nielsen, M.A.; Chuang, I.L.: Quantum Computation and Quantum Information, 10th Anniversary. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  20. Brassard, G.; Høyer, P.; Tapp, A.: arXiv:quant-ph/9805082 [quant-ph] (1998)

  21. Brassard, G.; Høyer, P.; Mosca, M.; Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  Google Scholar 

  22. Jones, T.; Brown, A.; Bush, I.; Benjamin, S.C.: QuEST and high performance simulation of quantum computers. Sci. Rep. 9, 1–11 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwini Kumar Malviya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malviya, A.K., Tiwari, N. Quantum Algorithm to Identify Division Property of a Multiset. Arab J Sci Eng 46, 8711–8719 (2021). https://doi.org/10.1007/s13369-021-05665-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05665-w

Keywords

Navigation