Skip to main content
Log in

Stability Analysis of Deep Rectangular Tunnels Using Adaptive Finite Element Limit Analysis with Hoek–Brown Failure Criterion

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the stability of deep rectangular tunnels excavated in a jointed rock mass using adaptive finite element limit analysis (AFELA) method. The rock mass is assumed to obey the generalized Hoek–Brown failure criterion. The numerical results from parametric studies are presented in the form of dimensionless tables and figures concerning stability numbers (Ns). Typical failure mechanisms are depicted and discussed based on visualized results from AFELA. The results demonstrate that Ns decreases with geological strength index (GSI), increases with disturbance factor (D), stays nearly unchanged with the intact rock yield parameter (mi) and is less sensitive to GSI as D decreases. Besides, an analytical upper bound limit analysis method is also applied to provide a check on the validity of the results from AFELA. The influence of the excavation-induced disturbance on the stability of deep rectangle tunnels is investigated by introducing a disturbance coefficient (ζ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Lang, B.D.A.: Span Design for Entry-Type Excavations. University of British Columbia, Vancouver (1994)

    Google Scholar 

  2. Ouchi, A.M.; Pakalnis, R.; Brady, T.M.: Update of span design curve for weak rock masses. In: Proceedings of the 99th Annual AGM-CIM Conference, Edmonton, AB (2004)

  3. Bieniawski, Z.: Engineering classification of jointed rock masses. Civ. Eng. S. Afr. (1973). https://doi.org/10.1016/0148-9062(74)90924-3

    Article  Google Scholar 

  4. Barton, N.; Lien, R.; Lunde, J.: Engineering classification of rock masses for the design of tunnel support. Rock Mech. 6(4), 189–236 (1974). https://doi.org/10.1007/bf01239496

    Article  Google Scholar 

  5. Chen, W.-F.: Limit Analysis and Soil Plasticity. Elsevier, Amsterdam (2013)

    Google Scholar 

  6. Leca, E.; Dormieux, L.: Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Géotechnique 40(4), 581–606 (1990). https://doi.org/10.1680/geot.1990.40.4.581

    Article  Google Scholar 

  7. Soubra, A.H.: Three-dimensional face stability analysis of shallow circular tunnels. In: ISRM International Symposium. International Society for Rock Mechanics and Rock Engineering (2000)

  8. Mollon, G.; Dias, D.; Soubra, A.H.: Probabilistic analysis and design of circular tunnels against face stability. Int. J. Geomech. 9(6), 237–249 (2009). https://doi.org/10.1061/(asce)1532-3641(2009)9:6(237)

    Article  Google Scholar 

  9. Zhao, L.H.; Li, D.J.; Li, L.; Yang, F.; Cheng, X.; Luo, W.: Three-dimensional stability analysis of a longitudinally inclined shallow tunnel face. Comput. Geotech. 87(JUL), 32–48 (2017). https://doi.org/10.1016/j.compgeo.2017.01.015

    Article  Google Scholar 

  10. Zhao, L.H.; Li, D.J.; Yang, F.; Li, L.; Cheng, X.: Dimensionless parameter diagrams for the active and passive stability of a shallow 3D tunnel face. KSCE J. Civ. Eng. 23(2), 866–878 (2019). https://doi.org/10.1007/s12205-018-5835-0

    Article  Google Scholar 

  11. Fraldi, M.; Guarracino, F.: Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek–Brown failure criterion. Int. J. Rock Mech. Min. Sci. 46(4), 665–673 (2009). https://doi.org/10.1016/j.ijrmms.2008.09.014

    Article  Google Scholar 

  12. Fraldi, M.; Guarracino, F.: Evaluation of impending collapse in circular tunnels by analytical and numerical approaches. Tunn. Undergr. Space Technol. 26(4), 507–516 (2011). https://doi.org/10.1016/j.tust.2011.03.003

    Article  Google Scholar 

  13. Huang, F.; Yang, X.: Upper bound limit analysis of collapse shape for circular tunnel subjected to pore pressure based on the Hoek–Brown failure criterion. Tunn. Undergr. Space Technol. 26(5), 614–618 (2011). https://doi.org/10.1016/j.tust.2011.04.002

    Article  Google Scholar 

  14. Baus, R.; Wang, M.: Bearing capacity of strip footing above void. J. Geotech. Eng. 109(1), 1–14 (1983). https://doi.org/10.1061/(asce)0733-9410(1983)109:1(1)

    Article  Google Scholar 

  15. Badie, A.; Wang, M.: Stability of spread footing above void in clay. J. Geotech. Eng. 110(11), 1591–1605 (1984). https://doi.org/10.1061/(asce)0733-9410(1984)110:11(1591)

    Article  Google Scholar 

  16. Lee, J.K.; Jeong, S.; Ko, J.: Effect of load inclination on the undrained bearing capacity of surface spread footings above voids. Comput. Geotech. 66, 245–252 (2015). https://doi.org/10.1016/j.compgeo.2015.02.003

    Article  Google Scholar 

  17. Lavasan, A.A.; Talsaz, A.; Ghazavi, M.; Schanz, T.: Behavior of shallow strip footing on twin voids. Geotech. Geol. Eng. 34(6), 1791–1805 (2016). https://doi.org/10.1007/s10706-016-0149-9

    Article  Google Scholar 

  18. Assadi, A.; Sloan, S.W.: Undrained stability of shallow square tunnel. J. Geotech. Eng. 117(8), 1152–1173 (1991). https://doi.org/10.1061/(asce)0733-9410(1991)117:8(1152)

    Article  Google Scholar 

  19. Wilson, D.W.; Abbo, A.J.; Sloan, S.W.; Lyamin, A.V.: Undrained stability of a square tunnel where the shear strength increases linearly with depth. Comput. Geotech. 49, 314–325 (2013). https://doi.org/10.1016/j.compgeo.2012.09.005

    Article  Google Scholar 

  20. Yamamoto, K.; Lyamin, A.V.; Wilson, D.W.; Sloan, S.W.; Abbo, A.J.: Stability of a circular tunnel in cohesive-frictional soil subjected to surcharge loading. Comput. Geotech. 38(4), 504–514 (2011). https://doi.org/10.1016/j.compgeo.2011.02.014

    Article  Google Scholar 

  21. Wilson, D.W.; Abbo, A.J.; Sloan, S.W.; Lyamin, A.V.: Undrained stability of dual circular tunnels. Int. J. Geomech. 14(1), 69–79 (2014). https://doi.org/10.1061/(asce)gm.1943-5622.0000288

    Article  Google Scholar 

  22. Zhao, L.H.; Huang, S.; Zhang, R.; Zuo, S.: Stability analysis of irregular cavities using upper bound finite element limit analysis method. Comput. Geotech. 103, 1–12 (2018). https://doi.org/10.1016/j.compgeo.2018.06.018

    Article  Google Scholar 

  23. Augarde, C.E.; Lyamin, A.V.; Sloan, S.W.: Prediction of undrained sinkhole collapse. J. Geotech. Geoenviron. Eng. 129(3), 197–205 (2003). https://doi.org/10.1061/(asce)1090-0241(2003)129:3(197)

    Article  Google Scholar 

  24. Zhang, R.; Chen, G.H.; Zou, J.F.; Zhao, L.H.; Jiang, C.: Study on roof collapse of deep circular cavities in jointed rock masses using adaptive finite element limit analysis. Comput. Geotech. 111(10), 42–55 (2019). https://doi.org/10.1016/j.compgeo.2019.03.003

    Article  Google Scholar 

  25. Brown, E.; Hoek, E.: Underground Excavations in Rock. CRC Press, Boca Raton (1980)

    Book  Google Scholar 

  26. Hoek, E.; Brown, E.T.: Empirical strength criterion for rock masses. J. Geotech. Geoenviron. Eng. 106, 1013–1035 (1980)

    Google Scholar 

  27. Hoek, E.; Wood, D.; Shah, S.: A modified Hoek–Brown failure criterion for jointed rock masses. In: Rock Characterization: ISRM Symposium, Eurock'92, Chester, UK, 14–17 September 1992. Thomas Telford Publishing (1992)

  28. Hoek, E.; Brown, E.T.: Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 34(8), 1165–1186 (1997). https://doi.org/10.1016/S1365-1609(97)80069-X

    Article  Google Scholar 

  29. Hoek, E.; Carranza, T.C.; Corkum, B.: Hoek–Brown failure criterion-2002 edition. Proc. NARMS-Tac 1(1), 267–273 (2002)

    Google Scholar 

  30. Zhang, R.; Li, L.; Zhao, L.H.; Tang, G.P.: An adaptive remeshing procedure for discontinuous finite element limit analysis. Int. J. Numer. Methods Eng. (2018). https://doi.org/10.1002/nme.5925

    Article  MathSciNet  Google Scholar 

  31. Borges, L.; Zouain, N.; Huespe, A.: A nonlinear optimization procedure for limit analysis. Eur. J. Mech. Ser. A Solids 15, 487–512 (1996)

    MATH  Google Scholar 

  32. Lyamin, A.V.; Sloan, S.W.: Upper bound limit analysis using linear finite elements and non-linear programming. Int. J. Numer. Anal. Methods Geomech. 26(2), 181–216 (2002). https://doi.org/10.1002/nag.198

    Article  MATH  Google Scholar 

  33. Lyamin, A.; Sloan, S.W.: Lower bound limit analysis using non-linear programming. Int. J. Numer. Methods Eng. 55(5), 573–611 (2002). https://doi.org/10.1002/nme.511

    Article  MATH  Google Scholar 

  34. Ciria, H.; Peraire, J.; Bonet, J.: Mesh adaptive computation of upper and lower bounds in limit analysis. Int. J. Numer. Methods Eng. 75(8), 899–944 (2008). https://doi.org/10.1002/nme.2275

    Article  MathSciNet  MATH  Google Scholar 

  35. Merifield, R.S.; Lyamin, A.V.; Sloan, S.W.: Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek–Brown criterion. Int. J. Rock Mech. Min. Sci. 43(6), 920–937 (2006). https://doi.org/10.1016/j.ijrmms.2006.02.001

    Article  Google Scholar 

  36. Muñoz, J.J.; Huerta, A.; Bonet, J.; Peraire, J.: A note on upper bound formulations in limit analysis. Int. J. Numer. Methods Eng. 91(8), 896–908 (2012). https://doi.org/10.1002/nme.4303

    Article  MathSciNet  Google Scholar 

  37. Sloan, S.W.: Geotechnical stability analysis. Géotechnique 63(7), 531–571 (2013). https://doi.org/10.1680/geot.12.RL.001

    Article  Google Scholar 

  38. Balmer, G.: A general analytical solution for Mohr’ s envelope . Am. Soc. Test. Mater. 52, 1 (1952)

    Google Scholar 

Download references

Funding

The research reported herein was sponsored by the National Natural Science Foundation of China (Grant Numbers 51478477, 51878668); the Guizhou Provincial Department of Transportation Foundation (Grant Number 2018123040); the Hunan Provincial Department of Transportation Foundation (Grant Number 201828); and the Key Program of Department of Transportation of Jiangxi Province (Grant Numbers 2019C0011, 2019C0010). All financial support is greatly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Writing-review & editing, data collection and analysis were performed by Shan Huang. The first draft of the manuscript was written by Shan Huang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lianheng Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Hu, S., Zhao, L. et al. Stability Analysis of Deep Rectangular Tunnels Using Adaptive Finite Element Limit Analysis with Hoek–Brown Failure Criterion. Arab J Sci Eng 46, 10931–10941 (2021). https://doi.org/10.1007/s13369-021-05632-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05632-5

Keywords

Navigation