Skip to main content

A Novel Quantum Firefly Algorithm for Global Optimization

Abstract

A novel nature-inspired metaheuristic optimization algorithm, called the quantum firefly algorithm, is proposed in this paper. The algorithm imitates (a) the social behaviour of fireflies mating in nature, (b) laws of quantum physics, and (c) laws of natural evolution. The algorithm combines the powers of two well-known algorithms: the firefly algorithm and the quantum genetic algorithm. The proposed quantum firefly algorithm’s performance is tested on 15 mathematical test functions and one structural design problem. The obtained results show that the quantum firefly algorithm is very competitive compared to the firefly algorithm and the quantum genetic algorithm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Notes

  1. www.benchmarkfcns.xyz/fcns.

References

  1. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  2. Koza, J.R., Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection, vol. 1. MIT press, Cambridge (1992)

    MATH  Google Scholar 

  3. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  4. Lee, K.S., Geem, Z.W., Lee, S.-H., Bae, K.-W.: The harmony search heuristic algorithm for discrete structural optimization. Eng. Optim. 37(7), 663–684 (2005)

    Article  MathSciNet  Google Scholar 

  5. Talbi, H., Draa, A.: A new real-coded quantum-inspired evolutionary algorithm for continuous optimization. Appl. Soft Comput. 61, 765–791 (2017)

    Article  Google Scholar 

  6. Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)

    Article  Google Scholar 

  7. Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)

    Article  MathSciNet  Google Scholar 

  8. Kaveh, A., Farhoudi, N.: A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013)

    Article  Google Scholar 

  9. Pan, W.-T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Syst. 26, 69–74 (2012)

    Article  Google Scholar 

  10. Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Askarzadeh, A., Rezazadeh, A.: A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int. J. Energy Res. 37(10), 1196–1204 (2013)

    Article  Google Scholar 

  12. Oftadeh, R., Mahjoob, M., Shariatpanahi, M.: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput. Math. Appl. 60(7), 2087–2098 (2010)

    Article  MATH  Google Scholar 

  13. Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation,” arXiv preprint arXiv:1003.1409, (2010)

  14. Yang, X.-S.: A new metaheuristic bat-inspired algorithm, in nature inspired cooperative strategies for optimization (NICSO 2010), pp. 65–74. Springer, Berlin (2010)

    Book  Google Scholar 

  15. Shiqin, Y., Jianjun, J., Guangxing, Y.: A dolphin partner optimization. WRI Glob. Congr. Intell. Syst. 1, 124–128 (2009)

    Google Scholar 

  16. Yang, X.-S.; Deb, S.: “Cuckoo search via lévy flights,” in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214, IEEE, (2009)

  17. Lu, X.; Zhou, Y.: “A novel global convergence algorithm: bee collecting pollen algorithm,” in International Conference on Intelligent Computing, pp. 518–525, Springer, (2008)

  18. Yang, C.; Tu, X.; Chen, J.: “Algorithm of marriage in honey bees optimization based on the wolf pack search,” in The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), pp. 462–467, IEEE, (2007)

  19. Mucherino, A.; Seref, O: “Monkey search: a novel metaheuristic search for global optimization,” in AIP conference proceedings, vol. 953, pp. 162–173, AIP, (2007)

  20. Pinto, P. C.; Runkler, T. A.; Sousa, J. M.: “Wasp swarm algorithm for dynamic max-sat problems,” in International Conference on Adaptive and Natural Computing Algorithms, pp. 350–357, Springer, (2007)

  21. Basturk, B.: An artificial bee colony (abc) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium, p. 2006. IN, USA, Indianapolis (2006)

  22. Roth, M.: “Termite: a swarm intelligent routing algorithm for mobile wireless ad-hoc networks,” (2005)

  23. Li, X.: “A new intelligent optimization-artificial fish swarm algorithm,” Doctor thesis, Zhejiang University of Zhejiang, China, (2003)

  24. Abbass, H. A.: “Mbo: marriage in honey bees optimization-a haplometrosis polygynous swarming approach,” in Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), vol. 1, pp. 207–214, IEEE, (2001)

  25. Dorigo, M.; Di Caro, G.: “Ant colony optimization: a new meta-heuristic,” in Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1470–1477, IEEE, (1999)

  26. Shi, Y.; Eberhart, R. C.: “Empirical study of particle swarm optimization,” in Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1945–1950, IEEE, (1999)

  27. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  28. Černỳ, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. Webster, B.; Philip, J.; Bernhard, A.: “Local search optimization algorithm based on natural principles of gravitation, ike’03, las vegas, nevada, usa, june 2003,” (2003)

  30. Erol, O.K., Eksin, I.: A new optimization method: big bang-big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)

    Article  Google Scholar 

  31. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Gsa: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  32. Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213(3–4), 267–289 (2010)

    Article  MATH  Google Scholar 

  33. Formato, R.: Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromagn. Res. 77, 425–491 (2007)

    Article  Google Scholar 

  34. Alatas, B.: Acroa: artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 38(10), 13170–13180 (2011)

    Article  Google Scholar 

  35. Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)

    Article  MathSciNet  Google Scholar 

  36. Kaveh, A., Khayatazad, M.: A new meta-heuristic method: ray optimization. Comput. Struct. 112, 283–294 (2012)

    Article  Google Scholar 

  37. Du, H.; Wu, X.; Zhuang, J.: “Small-world optimization algorithm for function optimization,” in International Conference on Natural Computation, pp. 264–273, Springer, (2006)

  38. Shah-Hosseini, H.: Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 6(1–2), 132–140 (2011)

    Google Scholar 

  39. Moghaddam, F. F.; Moghaddam, R. F.; Cheriet, M.: “Curved space optimization: a random search based on general relativity theory,” arXiv preprint arXiv:1208.2214, (2012)

  40. Zitouni, F., Harous, S., Maamri, R.: The solar system algorithm: a novel metaheuristic method for global optimization. IEEE Access 9, 4542–4565 (2021)

    Article  Google Scholar 

  41. Olorunda, O., Engelbrecht, A. P.: “Measuring exploration/exploitation in particle swarms using swarm diversity,” in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 1128–1134, IEEE, (2008).

  42. Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005)

    Article  Google Scholar 

  43. Lin, L., Gen, M.: Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation. Soft Comput. 13(2), 157–168 (2009)

    Article  MATH  Google Scholar 

  44. Yang, X.-S.: “Firefly algorithms for multimodal optimization,” in International symposium on stochastic algorithms, pp. 169–178, Springer, (2009)

  45. Narayanan, A.; Moore, M.: “Quantum-inspired genetic algorithms,” in Proceedings of IEEE international conference on evolutionary computation, pp. 61–66, IEEE, (1996)

  46. Yang, X.-S.: Nature-Inspired Optimization Algorithms. Elsevier, Amsterdam (2014)

    MATH  Google Scholar 

  47. Lahoz-Beltra, R.: Quantum genetic algorithms for computer scientists. Computers 5(4), 24 (2016)

    Article  Google Scholar 

  48. Bashirov, A.: Mathematical Analysis Fundamentals. Elsevier Science, Amsterdam (2016)

    MATH  Google Scholar 

  49. Winston, P.H., Shellard, S.A.: Artificial Intelligence at MIT: expanding Frontiers. MIT Press, Cambridge (1990)

    Book  Google Scholar 

  50. Yao, X., Liu, Y.: Fast evolutionary programming. Evol. Program. 3, 451–460 (1996)

    Google Scholar 

  51. Ortiz-Boyer, D., Hervás-Martínez, C., García-Pedrajas, N.: Cixl2: a crossover operator for evolutionary algorithms based on population features. J. Artif. Intell. Res. 24, 1–48 (2005)

    Article  MATH  Google Scholar 

  52. Jamil, M.; Yang, X.-S.; Zepernick, H.-J.: “Test functions for global optimization: a comprehensive survey,” in Swarm intelligence and Bio-inspired Computation, pp. 193–222, Elsevier, (2013)

  53. Chung, C.-J., Reynolds, R.G.: Caep: an evolution-based tool for real-valued function optimization using cultural algorithms. Int. J. Artif. Intell. Tools 7(03), 239–291 (1998)

    Article  Google Scholar 

  54. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)

    Article  Google Scholar 

  55. Yang, X.-S.: Metaheuristic optimization. Scholarpedia 6(8), 11472 (2011)

    Article  Google Scholar 

  56. Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver press, UK (2010)

    Google Scholar 

  57. Yang, X.-S.: Engineering Optimization: an Introduction with Metaheuristic Applications. John Wiley & Sons, Hoboken (2010)

    Book  Google Scholar 

  58. Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press, Cambridge (1992)

    Book  Google Scholar 

  59. Eberhart, R.; Kennedy, J.: “Particle swarm optimization,” in Proceedings of the IEEE international conference on neural networks, vol. 4, pp. 1942–1948, Citeseer, (1995)

  60. Li, X.-L.: An optimizing method based on autonomous animats: fish-swarm algorithm. Syst. Eng.-Theory Pract. 22(11), 32–38 (2002)

    Google Scholar 

  61. Dorigo, M.; Gambardella, L.M.; Birattari, M.; Martinoli, A.; Poli, R.; Stützle, T.: Ant colony optimization and swarm intelligence: 5th international workshop, ANTS 2006, Brussels, Belgium, September 4–7, 2006, Proceedings, vol. 4150. Springer (2006)

  62. Yang, X.-S.: Flower pollination algorithm for global optimization, in International conference on unconventional computing and natural computation, pp. 240–249, Springer, (2012)

  63. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  64. Tan, Y.; Zhu, Y.: “Fireworks algorithm for optimization,” in International conference in swarm intelligence, pp. 355–364, Springer, (2010)

  65. Tang, R.; Fong, S.; Yang, X.-S.; Deb, S.: “Wolf search algorithm with ephemeral memory,” in Seventh international conference on digital information management (ICDIM 2012), pp. 165–172, IEEE, (2012)

  66. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  67. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)

    Article  Google Scholar 

  68. Labbi, Y., Attous, D.B., Gabbar, H.A., Mahdad, B., Zidan, A.: A new rooted tree optimization algorithm for economic dispatch with valve-point effect. Int. J. Electr. Power Energy Syst. 79, 298–311 (2016)

    Article  Google Scholar 

  69. Kumar, A., Misra, R.K., Singh, D., Mishra, S., Das, S.: The spherical search algorithm for bound-constrained global optimization problems. Appl. Soft Comput. 85, 105734 (2019)

    Article  Google Scholar 

  70. Kaur, S., Awasthi, L.K., Sangal, A., Dhiman, G.: Tunicate swarm algorithm:d a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)

    Article  Google Scholar 

  71. Zouache, D., Nouioua, F., Moussaoui, A.: Quantum-inspired firefly algorithm with particle swarm optimization for discrete optimization problems. Soft Comput. 20(7), 2781–2799 (2016)

    Article  Google Scholar 

  72. Zitouni, F., Maamri, R., Harous, S.: Fa-qabc-mrta: a solution for solving the multi-robot task allocation problem. Intell. Serv. Robot. 12(4), 407–418 (2019)

    Article  Google Scholar 

  73. Bouaziz, A.; Draa, A.; Chikhi, S.: A quantum-inspired artificial bee colony algorithm for numerical optimisation, in 2013 11th international symposium on programming and systems (Isps), pp. 81–88, IEEE, (2013)

  74. Hassanien, A.E., Emary, E.: Swarm Intelligence: Principles, Advances, and Applications. CRC Press, Boca Raton (2016)

    Google Scholar 

  75. Rao, R.V., Savsani, V.J., Vakharia, D.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput.-Aided Design 43(3), 303–315 (2011)

    Article  Google Scholar 

  76. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  77. Fogel, D.B.: Artificial Intelligence Through Simulated Evolution. Wiley-IEEE Press, New York (1998)

    MATH  Google Scholar 

  78. He, S.; Wu, Q.; Saunders, J.: “A novel group search optimizer inspired by animal behavioural ecology,” in 2006 IEEE international conference on evolutionary computation, pp. 1272–1278, IEEE, (2006)

  79. Atashpaz-Gargari, E.; Lucas, C.:“Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition,” in 2007 IEEE congress on evolutionary computation, pp. 4661–4667, IEEE, (2007)

  80. Kashan, A. H.: “League championship algorithm: a new algorithm for numerical function optimization,” in 2009 international conference of soft computing and pattern recognition, pp. 43–48, IEEE, (2009)

  81. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)

    Article  Google Scholar 

  82. Gandomi, A.H.: Interior search algorithm (isa): a novel approach for global optimization. ISA Trans. 53(4), 1168–1183 (2014)

    Article  Google Scholar 

  83. Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)

    Article  Google Scholar 

  84. Moosavian, N., Roodsari, B.K.: Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm Evol. Comput. 17, 14–24 (2014)

    Article  Google Scholar 

  85. Dai, C., Chen, W., Zhu, Y., Zhang, X.: Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst. 24(3), 1218–1231 (2009)

    Article  Google Scholar 

  86. Ramezani, F., Lotfi, S.: Social-based algorithm (sba). Appl. Soft Comput. 13(5), 2837–2856 (2013)

    Article  Google Scholar 

  87. Ghorbani, N., Babaei, E.: Exchange market algorithm. Appl. Soft Comput. 19, 177–187 (2014)

    Article  Google Scholar 

  88. Eita, M., Fahmy, M.: Group counseling optimization. Appl. Soft Comput. 22, 585–604 (2014)

    Article  Google Scholar 

  89. Han, K.-H.; Kim, J.-H.: “Genetic quantum algorithm and its application to combinatorial optimization problem,” in Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol. 2, pp. 1354–1360, IEEE, (2000)

  90. Han, K.-H.; Park, K.-H.; Lee, C.-H.; Kim, J.-H.: “Parallel quantum-inspired genetic algorithm for combinatorial optimization problem,” in Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), vol. 2, pp. 1422–1429, IEEE, (2001)

  91. Jantos, P., Grzechca, D., Rutkowski, J.: Evolutionary algorithms for global parametric fault diagnosis in analogue integrated circuits. Bull. Polish Acad. Sci. Tech. Sci. 60(1), 133–142 (2012)

    Google Scholar 

  92. Talbi, H., Batouche, M., Draa, A.: A quantum-inspired evolutionary algorithm for multiobjective image segmentation. Int. J. Math. Phys. Eng. Sci. 1(2), 109–114 (2007)

    Google Scholar 

  93. Li, B.B., Wang, L.: A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(3), 576–591 (2007)

    Article  Google Scholar 

  94. Lau, T., Chung, C., Wong, K., Chung, T., Ho, S.: Quantum-inspired evolutionary algorithm approach for unit commitment. IEEE Trans. Power Syst. 24(3), 1503–1512 (2009)

    Article  Google Scholar 

  95. Lou, S.-H., Wu, Y.-W., Peng, L., Xiong, X.-Y.: Application of quantum-inspired evolutionary algorithm in reactive power optimization. Relay 33(18), 30–35 (2005)

    Google Scholar 

  96. Han, B.; Jiang, J.; Gao, Y.; Ma, J.: “A quantum genetic algorithm to solve the problem of multivariate,” in international conference on information computing and applications, pp. 308–314, Springer, (2011)

  97. Horn, R.A.: The hadamard product. Proc. Symp. Appl. Math 40, 87–169 (1990)

    Article  MathSciNet  Google Scholar 

  98. Chellaboina, V., Haddad, W.: Is the frobenius matrix norm induced? IEEE Trans. Autom. Control 40(12), 2137–2139 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  99. Arora, J.S.: Introduction to Optimum Design. Elsevier, Amsterdam (2004)

    Book  Google Scholar 

  100. Zimmerman, D.W., Zumbo, B.D.: Relative power of the wilcoxon test, the friedman test, and repeated-measures anova on ranks. J. Exp. Educ. 62(1), 75–86 (1993)

    Article  Google Scholar 

  101. Riffenburgh, R.H., Gillen, D.L.: Appendix 3 - Tables of Probability Distributions, in Statistics in Medicine, 4th edn., pp. 741–760. Academic Press, Cambridge (2020)

    Google Scholar 

  102. Rey, D.; Neuhäuser, M.: “Wilcoxon-signed-rank test,” in International encyclopedia of statistical science, pp. 1658–1659, Springer, Berlin, Heidelberg, (2011)

  103. Kumar, A., Wu, G., Ali, M.Z., Mallipeddi, R., Suganthan, P.N., Das, S.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol. Comput. 56, 100693 (2020)

    Article  Google Scholar 

  104. Mezura-Montes, E., Coello, C.A.C.: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J. Gen. Syst. 37(4), 443–473 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  105. Coello, C.A.C.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41(2), 113–127 (2000)

    Article  Google Scholar 

  106. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)

    MathSciNet  MATH  Google Scholar 

  107. Storn, R.: On the usage of differential evolution for function optimization,” in Proceedings of North American Fuzzy Information Processing, pp. 519–523, IEEE, (1996)

  108. Belegundu, A.D., Arora, J.S.: A study of mathematical programming methods for structural optimization. Part I: theory. Int. J. Numer. Methods Eng. 21(9), 1583–1599 (1985)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research work is supported by UAEU Grant: 31T102-UPAR-1-2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saad Harous.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zitouni, F., Harous, S. & Maamri, R. A Novel Quantum Firefly Algorithm for Global Optimization. Arab J Sci Eng 46, 8741–8759 (2021). https://doi.org/10.1007/s13369-021-05608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05608-5

Keywords

  • Firefly algorithm
  • Quantum genetic algorithm
  • Global optimization
  • Metaheuristics
  • Test functions