Abstract
A novel nature-inspired metaheuristic optimization algorithm, called the quantum firefly algorithm, is proposed in this paper. The algorithm imitates (a) the social behaviour of fireflies mating in nature, (b) laws of quantum physics, and (c) laws of natural evolution. The algorithm combines the powers of two well-known algorithms: the firefly algorithm and the quantum genetic algorithm. The proposed quantum firefly algorithm’s performance is tested on 15 mathematical test functions and one structural design problem. The obtained results show that the quantum firefly algorithm is very competitive compared to the firefly algorithm and the quantum genetic algorithm.
This is a preview of subscription content, access via your institution.
















References
Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
Koza, J.R., Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection, vol. 1. MIT press, Cambridge (1992)
Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)
Lee, K.S., Geem, Z.W., Lee, S.-H., Bae, K.-W.: The harmony search heuristic algorithm for discrete structural optimization. Eng. Optim. 37(7), 663–684 (2005)
Talbi, H., Draa, A.: A new real-coded quantum-inspired evolutionary algorithm for continuous optimization. Appl. Soft Comput. 61, 765–791 (2017)
Mirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 95, 51–67 (2016)
Mirjalili, S.: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)
Kaveh, A., Farhoudi, N.: A new optimization method: Dolphin echolocation. Adv. Eng. Softw. 59, 53–70 (2013)
Pan, W.-T.: A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowledge-Based Syst. 26, 69–74 (2012)
Gandomi, A.H., Alavi, A.H.: Krill herd: a new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4831–4845 (2012)
Askarzadeh, A., Rezazadeh, A.: A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: bird mating optimizer. Int. J. Energy Res. 37(10), 1196–1204 (2013)
Oftadeh, R., Mahjoob, M., Shariatpanahi, M.: A novel meta-heuristic optimization algorithm inspired by group hunting of animals: hunting search. Comput. Math. Appl. 60(7), 2087–2098 (2010)
Yang, X.-S.: Firefly algorithm, stochastic test functions and design optimisation,” arXiv preprint arXiv:1003.1409, (2010)
Yang, X.-S.: A new metaheuristic bat-inspired algorithm, in nature inspired cooperative strategies for optimization (NICSO 2010), pp. 65–74. Springer, Berlin (2010)
Shiqin, Y., Jianjun, J., Guangxing, Y.: A dolphin partner optimization. WRI Glob. Congr. Intell. Syst. 1, 124–128 (2009)
Yang, X.-S.; Deb, S.: “Cuckoo search via lévy flights,” in 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), pp. 210–214, IEEE, (2009)
Lu, X.; Zhou, Y.: “A novel global convergence algorithm: bee collecting pollen algorithm,” in International Conference on Intelligent Computing, pp. 518–525, Springer, (2008)
Yang, C.; Tu, X.; Chen, J.: “Algorithm of marriage in honey bees optimization based on the wolf pack search,” in The 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), pp. 462–467, IEEE, (2007)
Mucherino, A.; Seref, O: “Monkey search: a novel metaheuristic search for global optimization,” in AIP conference proceedings, vol. 953, pp. 162–173, AIP, (2007)
Pinto, P. C.; Runkler, T. A.; Sousa, J. M.: “Wasp swarm algorithm for dynamic max-sat problems,” in International Conference on Adaptive and Natural Computing Algorithms, pp. 350–357, Springer, (2007)
Basturk, B.: An artificial bee colony (abc) algorithm for numeric function optimization. In: IEEE swarm intelligence symposium, p. 2006. IN, USA, Indianapolis (2006)
Roth, M.: “Termite: a swarm intelligent routing algorithm for mobile wireless ad-hoc networks,” (2005)
Li, X.: “A new intelligent optimization-artificial fish swarm algorithm,” Doctor thesis, Zhejiang University of Zhejiang, China, (2003)
Abbass, H. A.: “Mbo: marriage in honey bees optimization-a haplometrosis polygynous swarming approach,” in Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), vol. 1, pp. 207–214, IEEE, (2001)
Dorigo, M.; Di Caro, G.: “Ant colony optimization: a new meta-heuristic,” in Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol. 2, pp. 1470–1477, IEEE, (1999)
Shi, Y.; Eberhart, R. C.: “Empirical study of particle swarm optimization,” in Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406), vol. 3, pp. 1945–1950, IEEE, (1999)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Černỳ, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)
Webster, B.; Philip, J.; Bernhard, A.: “Local search optimization algorithm based on natural principles of gravitation, ike’03, las vegas, nevada, usa, june 2003,” (2003)
Erol, O.K., Eksin, I.: A new optimization method: big bang-big crunch. Adv. Eng. Softw. 37(2), 106–111 (2006)
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Gsa: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
Kaveh, A., Talatahari, S.: A novel heuristic optimization method: charged system search. Acta Mech. 213(3–4), 267–289 (2010)
Formato, R.: Central force optimization: a new metaheuristic with applications in applied electromagnetics. Prog Electromagn. Res. 77, 425–491 (2007)
Alatas, B.: Acroa: artificial chemical reaction optimization algorithm for global optimization. Expert Syst. Appl. 38(10), 13170–13180 (2011)
Hatamlou, A.: Black hole: a new heuristic optimization approach for data clustering. Inf. Sci. 222, 175–184 (2013)
Kaveh, A., Khayatazad, M.: A new meta-heuristic method: ray optimization. Comput. Struct. 112, 283–294 (2012)
Du, H.; Wu, X.; Zhuang, J.: “Small-world optimization algorithm for function optimization,” in International Conference on Natural Computation, pp. 264–273, Springer, (2006)
Shah-Hosseini, H.: Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation. Int. J. Comput. Sci. Eng. 6(1–2), 132–140 (2011)
Moghaddam, F. F.; Moghaddam, R. F.; Cheriet, M.: “Curved space optimization: a random search based on general relativity theory,” arXiv preprint arXiv:1208.2214, (2012)
Zitouni, F., Harous, S., Maamri, R.: The solar system algorithm: a novel metaheuristic method for global optimization. IEEE Access 9, 4542–4565 (2021)
Olorunda, O., Engelbrecht, A. P.: “Measuring exploration/exploitation in particle swarms using swarm diversity,” in 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence), pp. 1128–1134, IEEE, (2008).
Alba, E., Dorronsoro, B.: The exploration/exploitation tradeoff in dynamic cellular genetic algorithms. IEEE Trans. Evol. Comput. 9(2), 126–142 (2005)
Lin, L., Gen, M.: Auto-tuning strategy for evolutionary algorithms: balancing between exploration and exploitation. Soft Comput. 13(2), 157–168 (2009)
Yang, X.-S.: “Firefly algorithms for multimodal optimization,” in International symposium on stochastic algorithms, pp. 169–178, Springer, (2009)
Narayanan, A.; Moore, M.: “Quantum-inspired genetic algorithms,” in Proceedings of IEEE international conference on evolutionary computation, pp. 61–66, IEEE, (1996)
Yang, X.-S.: Nature-Inspired Optimization Algorithms. Elsevier, Amsterdam (2014)
Lahoz-Beltra, R.: Quantum genetic algorithms for computer scientists. Computers 5(4), 24 (2016)
Bashirov, A.: Mathematical Analysis Fundamentals. Elsevier Science, Amsterdam (2016)
Winston, P.H., Shellard, S.A.: Artificial Intelligence at MIT: expanding Frontiers. MIT Press, Cambridge (1990)
Yao, X., Liu, Y.: Fast evolutionary programming. Evol. Program. 3, 451–460 (1996)
Ortiz-Boyer, D., Hervás-Martínez, C., García-Pedrajas, N.: Cixl2: a crossover operator for evolutionary algorithms based on population features. J. Artif. Intell. Res. 24, 1–48 (2005)
Jamil, M.; Yang, X.-S.; Zepernick, H.-J.: “Test functions for global optimization: a comprehensive survey,” in Swarm intelligence and Bio-inspired Computation, pp. 193–222, Elsevier, (2013)
Chung, C.-J., Reynolds, R.G.: Caep: an evolution-based tool for real-valued function optimization using cultural algorithms. Int. J. Artif. Intell. Tools 7(03), 239–291 (1998)
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003)
Yang, X.-S.: Metaheuristic optimization. Scholarpedia 6(8), 11472 (2011)
Yang, X.-S.: Nature-Inspired Metaheuristic Algorithms. Luniver press, UK (2010)
Yang, X.-S.: Engineering Optimization: an Introduction with Metaheuristic Applications. John Wiley & Sons, Hoboken (2010)
Holland, J.H., et al.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press, Cambridge (1992)
Eberhart, R.; Kennedy, J.: “Particle swarm optimization,” in Proceedings of the IEEE international conference on neural networks, vol. 4, pp. 1942–1948, Citeseer, (1995)
Li, X.-L.: An optimizing method based on autonomous animats: fish-swarm algorithm. Syst. Eng.-Theory Pract. 22(11), 32–38 (2002)
Dorigo, M.; Gambardella, L.M.; Birattari, M.; Martinoli, A.; Poli, R.; Stützle, T.: Ant colony optimization and swarm intelligence: 5th international workshop, ANTS 2006, Brussels, Belgium, September 4–7, 2006, Proceedings, vol. 4150. Springer (2006)
Yang, X.-S.: Flower pollination algorithm for global optimization, in International conference on unconventional computing and natural computation, pp. 240–249, Springer, (2012)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Glob. Optim. 39(3), 459–471 (2007)
Tan, Y.; Zhu, Y.: “Fireworks algorithm for optimization,” in International conference in swarm intelligence, pp. 355–364, Springer, (2010)
Tang, R.; Fong, S.; Yang, X.-S.; Deb, S.: “Wolf search algorithm with ephemeral memory,” in Seventh international conference on digital information management (ICDIM 2012), pp. 165–172, IEEE, (2012)
Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)
Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. Struct. 169, 1–12 (2016)
Labbi, Y., Attous, D.B., Gabbar, H.A., Mahdad, B., Zidan, A.: A new rooted tree optimization algorithm for economic dispatch with valve-point effect. Int. J. Electr. Power Energy Syst. 79, 298–311 (2016)
Kumar, A., Misra, R.K., Singh, D., Mishra, S., Das, S.: The spherical search algorithm for bound-constrained global optimization problems. Appl. Soft Comput. 85, 105734 (2019)
Kaur, S., Awasthi, L.K., Sangal, A., Dhiman, G.: Tunicate swarm algorithm:d a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)
Zouache, D., Nouioua, F., Moussaoui, A.: Quantum-inspired firefly algorithm with particle swarm optimization for discrete optimization problems. Soft Comput. 20(7), 2781–2799 (2016)
Zitouni, F., Maamri, R., Harous, S.: Fa-qabc-mrta: a solution for solving the multi-robot task allocation problem. Intell. Serv. Robot. 12(4), 407–418 (2019)
Bouaziz, A.; Draa, A.; Chikhi, S.: A quantum-inspired artificial bee colony algorithm for numerical optimisation, in 2013 11th international symposium on programming and systems (Isps), pp. 81–88, IEEE, (2013)
Hassanien, A.E., Emary, E.: Swarm Intelligence: Principles, Advances, and Applications. CRC Press, Boca Raton (2016)
Rao, R.V., Savsani, V.J., Vakharia, D.: Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput.-Aided Design 43(3), 303–315 (2011)
Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)
Fogel, D.B.: Artificial Intelligence Through Simulated Evolution. Wiley-IEEE Press, New York (1998)
He, S.; Wu, Q.; Saunders, J.: “A novel group search optimizer inspired by animal behavioural ecology,” in 2006 IEEE international conference on evolutionary computation, pp. 1272–1278, IEEE, (2006)
Atashpaz-Gargari, E.; Lucas, C.:“Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition,” in 2007 IEEE congress on evolutionary computation, pp. 4661–4667, IEEE, (2007)
Kashan, A. H.: “League championship algorithm: a new algorithm for numerical function optimization,” in 2009 international conference of soft computing and pattern recognition, pp. 43–48, IEEE, (2009)
Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)
Gandomi, A.H.: Interior search algorithm (isa): a novel approach for global optimization. ISA Trans. 53(4), 1168–1183 (2014)
Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M.: Mine blast algorithm: a new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 13(5), 2592–2612 (2013)
Moosavian, N., Roodsari, B.K.: Soccer league competition algorithm: a novel meta-heuristic algorithm for optimal design of water distribution networks. Swarm Evol. Comput. 17, 14–24 (2014)
Dai, C., Chen, W., Zhu, Y., Zhang, X.: Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst. 24(3), 1218–1231 (2009)
Ramezani, F., Lotfi, S.: Social-based algorithm (sba). Appl. Soft Comput. 13(5), 2837–2856 (2013)
Ghorbani, N., Babaei, E.: Exchange market algorithm. Appl. Soft Comput. 19, 177–187 (2014)
Eita, M., Fahmy, M.: Group counseling optimization. Appl. Soft Comput. 22, 585–604 (2014)
Han, K.-H.; Kim, J.-H.: “Genetic quantum algorithm and its application to combinatorial optimization problem,” in Proceedings of the 2000 congress on evolutionary computation. CEC00 (Cat. No. 00TH8512), vol. 2, pp. 1354–1360, IEEE, (2000)
Han, K.-H.; Park, K.-H.; Lee, C.-H.; Kim, J.-H.: “Parallel quantum-inspired genetic algorithm for combinatorial optimization problem,” in Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No. 01TH8546), vol. 2, pp. 1422–1429, IEEE, (2001)
Jantos, P., Grzechca, D., Rutkowski, J.: Evolutionary algorithms for global parametric fault diagnosis in analogue integrated circuits. Bull. Polish Acad. Sci. Tech. Sci. 60(1), 133–142 (2012)
Talbi, H., Batouche, M., Draa, A.: A quantum-inspired evolutionary algorithm for multiobjective image segmentation. Int. J. Math. Phys. Eng. Sci. 1(2), 109–114 (2007)
Li, B.B., Wang, L.: A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 37(3), 576–591 (2007)
Lau, T., Chung, C., Wong, K., Chung, T., Ho, S.: Quantum-inspired evolutionary algorithm approach for unit commitment. IEEE Trans. Power Syst. 24(3), 1503–1512 (2009)
Lou, S.-H., Wu, Y.-W., Peng, L., Xiong, X.-Y.: Application of quantum-inspired evolutionary algorithm in reactive power optimization. Relay 33(18), 30–35 (2005)
Han, B.; Jiang, J.; Gao, Y.; Ma, J.: “A quantum genetic algorithm to solve the problem of multivariate,” in international conference on information computing and applications, pp. 308–314, Springer, (2011)
Horn, R.A.: The hadamard product. Proc. Symp. Appl. Math 40, 87–169 (1990)
Chellaboina, V., Haddad, W.: Is the frobenius matrix norm induced? IEEE Trans. Autom. Control 40(12), 2137–2139 (1995)
Arora, J.S.: Introduction to Optimum Design. Elsevier, Amsterdam (2004)
Zimmerman, D.W., Zumbo, B.D.: Relative power of the wilcoxon test, the friedman test, and repeated-measures anova on ranks. J. Exp. Educ. 62(1), 75–86 (1993)
Riffenburgh, R.H., Gillen, D.L.: Appendix 3 - Tables of Probability Distributions, in Statistics in Medicine, 4th edn., pp. 741–760. Academic Press, Cambridge (2020)
Rey, D.; Neuhäuser, M.: “Wilcoxon-signed-rank test,” in International encyclopedia of statistical science, pp. 1658–1659, Springer, Berlin, Heidelberg, (2011)
Kumar, A., Wu, G., Ali, M.Z., Mallipeddi, R., Suganthan, P.N., Das, S.: A test-suite of non-convex constrained optimization problems from the real-world and some baseline results. Swarm Evol. Comput. 56, 100693 (2020)
Mezura-Montes, E., Coello, C.A.C.: An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J. Gen. Syst. 37(4), 443–473 (2008)
Coello, C.A.C.: Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 41(2), 113–127 (2000)
Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)
Storn, R.: On the usage of differential evolution for function optimization,” in Proceedings of North American Fuzzy Information Processing, pp. 519–523, IEEE, (1996)
Belegundu, A.D., Arora, J.S.: A study of mathematical programming methods for structural optimization. Part I: theory. Int. J. Numer. Methods Eng. 21(9), 1583–1599 (1985)
Acknowledgements
This research work is supported by UAEU Grant: 31T102-UPAR-1-2017.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Zitouni, F., Harous, S. & Maamri, R. A Novel Quantum Firefly Algorithm for Global Optimization. Arab J Sci Eng 46, 8741–8759 (2021). https://doi.org/10.1007/s13369-021-05608-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13369-021-05608-5
Keywords
- Firefly algorithm
- Quantum genetic algorithm
- Global optimization
- Metaheuristics
- Test functions