Skip to main content
Log in

Alkaloids Rich Extracts from Brown Algae Against Multidrug-Resistant Bacteria by Distinctive Mode of Action

  • Research Article-Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Algal alkaloids are widely used for their pharmacological properties as antimicrobial agents. This study determined the antibacterial activities of algal alkaloid-rich extracts against isolates of multidrug-resistant Staphylococcus aureus and enterohaemorrhagic Escherichia coli (EHEC) O157, as well as the probable mode of action underlying their antibacterial effect. The total alkaloids were extracted from two Libyan brown algae, namely Sargassum hornschuchii and Cystoseira compressa and tested against six different isolates from the bacteria mentioned above using the agar-well diffusion method, and their mode of action on isolates was evaluated by several bacterial physiological indicators, including intracellular potassium ion efflux and nucleotide leakage. Also, the extracts' hemolytic activity was assessed as an indicator of their cytotoxicity on red blood cells. Although not to the same extent, both alkaloid extracts presented antibacterial activities against all tested isolates with no evidence of bacterial regrowth. The alkaloid extract from S. hornschuchii exerted the best effect on bacteria growth with minimum inhibitory concentration values ranging between 125 and 500 mg/mL. The results showed that the alkaloid extracts significantly induced a distinct release of nucleotide and potassium ions out of the cell membrane, indicating that they cause a change in the fluidity or permeability or both of the cell membrane. Moreover, the results revealed that there were very low cytotoxic effects. Therefore, algal alkaloids may contribute to the development of potential antibacterial agents in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bhakuni, D.S.; Rawat, D.S.: Bioactive Marine Natural Products. Springer, Berlin (2006)

    Google Scholar 

  2. Saadaoui, I.; Rasheed, R.; Abdulrahman, N.; Bounnit, T.; Cherif, M.; Al Jabri, H.; Mraiche, F.: Algae-derived bioactive compounds with anti-lung cancer potential. Mar. Drugs 18, 197 (2020)

    Article  Google Scholar 

  3. Kaleagasioglu, F.; Güven, K.C.; Sezik, E.; Erdugan, H.; Coban, B.: Pharmacology of macroalgae alkaloids. In: Natural Products, pp. 1203–1216. Berlin, Heidelberg (2013)

  4. Gul, W.; Hamann, M.T.: Indole alkaloid marine natural products: an established source of cancer drug leads with considerable promise for the control of parasitic, neurological and other diseases. Life Sci. 78, 442–453 (2005)

    Article  Google Scholar 

  5. Güven, K.C.; Percot, A.; Sezik, E.: Alkaloids in marine algae. Mar. Drugs. 8, 269–284 (2010)

    Article  Google Scholar 

  6. Souza, C.R.; Bezerra, W.P.; Souto, J.T.: Marine alkaloids with anti-inflammatory activity: current knowledge and future perspectives. Mar. Drugs. 18, 147 (2020)

    Article  Google Scholar 

  7. Alghazeer, R.; Whida, F.; Abduelrhman, E.; Gammoudi, F.; Azwai, S.: Screening of antibacterial activity in marine green, red and brown macroalgae from the western coast of Libya. Nat. Sci. 5, 7–14 (2013)

    Google Scholar 

  8. Xu, X.; Zhu, Y.; Gao, W.; Kong, C.: Agricultural lead compounds from Laurencia majuscula. Proc. Int. Forum Green Chem. Sci. Eng. Process Syst. Eng. 2006, 538–541 (2006)

    Google Scholar 

  9. Rehman, S.; Khan, H.: Advances in antioxidant potential of natural alkaloids. Curr. Bioact. Compd. 13, 101–108 (2017)

    Article  Google Scholar 

  10. Liu, M.; Xu, H.; Lin, X.: Pharmacological profile of bromophenols derived from marine organisms. Encycl. Mar. Biotechnol. 3, 1619–1639 (2020)

    Article  Google Scholar 

  11. Gross, H.; Goeger, D.E.; Hills, P.; Mooberry, S.L.; Ballantine, D.L.; Murray, T.F.; Valeriote, F.A.; Gerwick, W.H.: Lophocladines, bioactive alkaloids from the red alga Lophocladia sp. J. Nat. Prod. 69, 640–644 (2006)

    Article  Google Scholar 

  12. Nijampatnam, B.; Dutta, S.; Velu, S.E.: Recent developments in the isolation, synthesis, and bioactivities of bispyrroloquinone alkaloids of marine origin. Chin. J. Nat. Med. 13, 561 (2015)

    Google Scholar 

  13. Saudagar, R.B.; Saokar, S.: Anti-inflammatory natural compounds from herbal and marine origin. J. Drug Deliv. Ther. 9, 669–672 (2019)

    Google Scholar 

  14. Luqman, A.; Nega, M.; Nguyen, M.T.; Ebner, P.; Götz, F.: SadA-expressing staphylococci in the human gut show increased cell adherence and internalization. Cell Rep. 22, 535–545 (2018)

    Article  Google Scholar 

  15. Melander, R.J.; Liu, H.B.; Stephens, M.D.; Bewley, C.A.; Melander, C.: Marine sponge alkaloids as a source of anti-bacterial adjuvants. Bioorg. Med. Chem. Lett. 26, 5863–5866 (2016)

    Article  Google Scholar 

  16. Fathima, A.; Rao, J.R.: Selective toxicity of Catech in—a natural flavonoid towards bacteria. Appl. Microbiol. Biotechnol. 100, 6395–6402 (2016)

    Article  Google Scholar 

  17. Gafur, A.; Sukamdani, G.Y.; Kristi, N.; Maruf, A.; Xu, J.; Chen, X.; Wang, G.; Ye, Z.: From bulk to nano-delivery of essential phytochemicals: recent progress and strategies for antibacterial resistance. J. Mater. Chem. B. 8, 9825–9835 (2020)

    Article  Google Scholar 

  18. Maurya, A.; Dwivedi, G.R.; Darokar, M.P.; Srivastava, S.K.: Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli. Chem. Biol. Drug Des. 81, 484–490 (2013)

    Article  Google Scholar 

  19. Mullin, S.; Mani, N.; Grossman, T.H.: Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX-710) and timcodar (VX-853). Antimicrob. Agents Chemother. 48, 4171–4176 (2004)

    Article  Google Scholar 

  20. Mabhiza, D.; Chitemerere, T.; Mukanganyama, S.: Antibacterial properties of alkaloid extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. Int. J. Med. Chem. 2016, 1–7 (2016)

    Google Scholar 

  21. Alghazeer, R.; Elmansori, A.; Sidati, M.; Gammoudi, F.; Azwai, S.; Naas, H.; Garbaj, A.; Eldaghayes, I.: In vitro antibacterial activity of flavonoid extracts of two selected libyan algae against multi-drug resistant bacteria isolated from food products. J. Biosci. Med. 5, 26 (2017)

    Google Scholar 

  22. Hadi, S.; Bremner, J.B.: Initial studies on alkaloids from Lombok medicinal plants. Molecules 6, 117–129 (2001)

    Article  Google Scholar 

  23. Garbaj, A.M.; Awad, E.M.; Azwai, S.M.; Abolghait, S.K.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Barbieri, I.; Eldaghayes, I.M.: Enterohemorrhagic Escherichia coli O157 in milk and dairy products from Libya: isolation and molecular identification by partial sequencing of 16S rDNA. Vet. World 9, 1184 (2016)

    Article  Google Scholar 

  24. Naas, H.T.; Edarhoby, R.A.; Garbaj, A.M.; Azwai, S.M.; Abolghait, S.K.; Gammoudi, F.T.; Moawad, A.A.; Barbieri, I.; Eldaghayes, I.M.: Occurrence, characterization, and antibiogram of Staphylococcus aureus in meat, meat products, and some seafood from Libyan retail markets. Vet. World. 12, 925 (2019)

    Article  Google Scholar 

  25. Azwai, S.M.; Alfallani, E.A.; Abolghait, S.K.; Garbaj, A.M.; Naas, H.T.; Moawad, A.A.; Gammoudi, F.T.; Rayes, H.M.; Barbieri, I.; Eldaghayes, I.M.: Isolation and molecular identification of Vibrio spp. by sequencing of 16S rDNA from seafood, meat and meat products in Libya. Open Vet. J. 6, 36–43 (2016)

    Article  Google Scholar 

  26. Manilal, A.; Sujith, S.; Kiran, G.S.; Selvin, J.; Shakir, C.; Gandhimathi, R.; Panikkar, M.V.N.: Biopotentials of seaweeds collected from southwest coast of India. J. Mar. Sci. Technol. 17, 67–73 (2009)

    Article  Google Scholar 

  27. Daud, A.; Gallo, A.; Riera, A.S.: Antimicrobial properties of Phrygilanthus acutifolius. J. Ethnopharmacol. 99, 193–197 (2005)

    Article  Google Scholar 

  28. Spencer, J.F.; de Spencer, A.L.R.: Public Health Microbiology: Methods and Protocols, Vol. 268. Springer, Berlin (2004)

    Book  Google Scholar 

  29. Hao, G.; Shi, Y.H.; Tang, Y.L.; Le, G.W.: The membrane action mechanism of analogs of the antimicrobial peptide Buforin 2. Peptides 30, 1421–1427 (2009)

    Article  Google Scholar 

  30. Tang, Y.L.; Shi, Y.H.; Zhao, W.; Hao, G.; Le, G.W.: Insertion mode of a novel anionic antimicrobial peptide MDpep5 (Val-Glu-Ser-Trp-Val) from Chinese traditional edible larvae of housefly and its effect on surface potential of bacterial membrane. J. Pharm. Biomed. Anal. 48, 1187–1194 (2008)

    Article  Google Scholar 

  31. Da Silva, E.; Shahgaldian, P.; Coleman, A.W.: Haemolytic properties of some water-soluble para-sulphonato-calix-[n]-arenes. Int. J. Pharm. 273, 57–62 (2004)

    Article  Google Scholar 

  32. Shannon, E.; Abu-Ghannam, N.: Antibacterial derivatives of marine algae: an overview of pharmacological mechanisms and applications. Mar. Drugs 14, 81 (2016)

    Article  Google Scholar 

  33. Mickymaray, S.; Alturaiki, W.: Antifungal efficacy of marine macroalgae against fungal isolates from bronchial asthmatic cases. Molecules 23, 3032 (2018)

    Article  Google Scholar 

  34. Kim, S.-K.; Vo, T.-S.; Ngo, D.-H.: Potential application of marine algae as antiviral agents in medicinal foods. Adv. Food Nutr. Res. 64, 245–254 (2011)

    Article  Google Scholar 

  35. Lunagariya, J.; Bhadja, P.; Zhong, S.; Vekariya, R.; Xu, S.: Marine natural product bis-indole alkaloid caulerpin: chemistry and biology. Mini. Rev. Med. Chem. 19, 751–761 (2019)

    Article  Google Scholar 

  36. Leandro, A.; Pereira, L.; Gonçalves, A.M.: Diverse applications of marine macroalgae. Mar. Drugs 18, 17 (2020)

    Article  Google Scholar 

  37. Ramawat, K.G.; Mérillon, J.-M.: Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin (2013)

    Book  Google Scholar 

  38. Abad, M.; Bedoya, L.; Bermejo, P.: Marine compounds and their antimicrobial activities. Sci Against Microb Pathog Commun Curr Res Technol Adv 51, 1293–1306 (2011)

    Google Scholar 

  39. Ebada, S.S.; Lin, W.; Proksch, P.: Bioactive sesterterpenes and triterpenes from marine sponges: occurrence and pharmacological significance. Mar. Drugs 8, 313–346 (2010)

    Article  Google Scholar 

  40. Kurhekar, J.V.: Chapter 17 - Antimicrobial lead compounds from marine plants. In: Egbuna, C., Kumar, S., Ifemeje, J.C., Ezzat, S.M., Kaliyaperumal, S. (eds.) Phytochemicals as Lead Compounds for New Drug Discovery. Elsevier (2020)

  41. Chen, C.Z.; Cooper, S.L.: Interactions between dendrimer biocides and bacterial membranes. Biomaterials 23, 3359–3368 (2002)

    Article  Google Scholar 

  42. Tüney, İ; Cadirci, B.H.; Ünal, D.; Sukatar, A.: Antimicrobial activities of the extracts of marine algae from the coast of Urla (Izmir, Turkey). Turk. J. Biol. 30, 171–175 (2006)

    Google Scholar 

  43. Aziz, E.; Batool, R.; Khan, M.U.; Rauf, A.; Akhtar, W.; Heydari, M.; Rehman, S.; Shahzad, T.; Malik, A.; Mosavat, S.H.; Plygun, S.: An overview on red algae bioactive compounds and their pharmaceutical applications. J. Complement. Integr. Med. 17, 4 (2020)

    Google Scholar 

  44. Casciaro, B.; Mangiardi, L.; Cappiello, F.; Romeo, I.; Loffredo, M.R.; Iazzetti, A.; Calcaterra, A.; Goggiamani, A.; Ghirga, F.; Mangoni, M.L.; Botta, B.: Naturally-occurring alkaloids of plant origin as potential antimicrobials against antibiotic-resistant infections. Molecules 25, 3619 (2020)

    Article  Google Scholar 

  45. Gajdács, M.: The concept of an ideal antibiotic: implications for drug design. Molecules 24, 892 (2019)

    Article  Google Scholar 

  46. French, G.L.: Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. J. Antimicrob. Chemother. 58, 1107–1117 (2006)

    Article  Google Scholar 

  47. Otshudi, A.L.; Apers, S.; Pieters, L.; Claeys, M.; Pannecouque, C.; De Clercq, E.; Van Zeebroeck, A.; Lauwers, S.; Frederich, M.; Foriers, A.: Biologically active bisbenzylisoquinoline alkaloids from the root bark of Epinetrum villosum. J. Ethnopharmacol. 102, 89–94 (2005)

    Article  Google Scholar 

  48. Kuete, V.; Wansi, J.D.; Mbaveng, A.T.; Sop, M.K.; Tadjong, A.T.; Beng, V.P.; Etoa, F.X.; Wandji, J.; Meyer, J.M.; Lall, N.: Antimicrobial activity of the methanolic extract and compounds from Teclea afzelii (Rutaceae). S. Afr. J. Bot. 74, 572–576 (2008)

    Article  Google Scholar 

  49. Alhanout, K.; Malesinki, S.; Vidal, N.; Peyrot, V.; Rolain, J.M.; Brunel, J.M.: New insights into the antibacterial mechanism of action of squalamine. J. Antimicrob. Chemother. 65, 1688–1693 (2010)

    Article  Google Scholar 

  50. Tavares, L.D.C.; Zanon, G.; Weber, A.D.; Neto, A.T.; Mostardeiro, C.P.; Da Cruz, I.B.; Oliveira, R.M.; Ilha, V.; Dalcol, I.I.; Morel, A.F.: Structure-activity relationship of benzophenanthridine alkaloids from Zanthoxylum rhoifolium having antimicrobial activity. PLoS ONE 9, e97000 (2014)

    Article  Google Scholar 

  51. Bezić, N.; Skočibušić, M.; Dunkić, V.; Radonić, A.: Composition and antimicrobial activity of Achillea clavennae L. essential oil. Phytother. Res. 17, 1037–1040 (2003)

    Article  Google Scholar 

  52. Bajpai, V.K.: Antimicrobial bioactive compounds from marine algae: a mini review Indian. J. Geo Mar. Sci. 9, 1076–1085 (2016)

    Google Scholar 

  53. Tsuchiya, H.: Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules 20, 18923–18966 (2015)

    Article  Google Scholar 

  54. Mittal, R.P.; Jaitak, V.: Plant-derived natural alkaloids as new antimicrobial and adjuvant agents in existing antimicrobial therapy. Curr. Drug Targets. 20, 1409–1433 (2019)

    Article  Google Scholar 

  55. Kittakoop, P.; Mahidol, C.; Ruchirawat, S.: Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. Curr. Top. Med. Chem. 14, 239–252 (2014)

    Article  Google Scholar 

  56. Thawabteh, A.; Juma, S.; Bader, M.; Karaman, D.; Scrano, L.; Bufo, S.A.; Karaman, R.: The biological activity of natural alkaloids against herbivores, cancerous cells and pathogens. Toxins 11, 656 (2019)

    Article  Google Scholar 

  57. Sawer, I.K.; Berry, M.I.; Ford, J.L.: The killing effect of cryptolepine on Staphylococcus aureus. Lett. Appl. Microbiol. 40, 24–29 (2005)

    Article  Google Scholar 

  58. Cushnie, T.T.; Cushnie, B.; Lamb, A.J.: Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents 44, 377–386 (2014)

    Article  Google Scholar 

  59. Dassonneville, L.; Lansiaux, A.; Wattelet, A.; Wattez, N.; Mahieu, C.; Van Miert, S.; Pieters, L.; Bailly, C.: Cytotoxicity and cell cycle effects of the plant alkaloids cryptolepine and neocryptolepine: relation to drug-induced apoptosis. Eur. J. Pharmacol. 409, 9–18 (2000)

    Article  Google Scholar 

  60. Lisgarten, J.N.; Coll, M.; Portugal, J.; Wright, C.W.; Aymami, J.: The antimalarial and cytotoxic drug cryptolepine intercalates into DNA at cytosine-cytosine sites. Nat. Struct. Biol. 9, 57–60 (2002)

    Article  Google Scholar 

  61. Guittat, L.; Alberti, P.; Rosu, F.; Van Miert, S.; Thetiot, E.; Pieters, L.; Gabelica, V.; De Pauw, E.; Ottaviani, A.; Riou, J.F.; Mergny, J.L.: Interactions of cryptolepine and neocryptolepine with unusual DNA structures. Biochimie 85, 535–547 (2003)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

RA conceived, designed, and organized the study. SA, AMG, AA, SE, MS, EY, and MGK contributed to the conduct of the study. SA, AMG, AA, SE, AAE, GS, and WSA performed the experiments, RA, AAE, GS, and WSA analyzed the data. RA, SA, AMG, AA, SE, MS, EY, and MGK drafted the manuscript and critiqued the output for intellectual content. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Rabia Alghazeer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alghazeer, R., Azwai, S., Garbaj, A.M. et al. Alkaloids Rich Extracts from Brown Algae Against Multidrug-Resistant Bacteria by Distinctive Mode of Action. Arab J Sci Eng 47, 179–188 (2022). https://doi.org/10.1007/s13369-021-05592-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05592-w

Keywords

Navigation