Skip to main content

Advertisement

Log in

Energy and Exergy Analyses of a Refrigerant Pump Integrated Dual-Ejector Refrigeration (DER) System

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The aims of the present study are to design and perform the analysis of a dual-ejector refrigeration system (DER). The system is constructed by adding a second ejector and a refrigeration pump to the classical single-ejector refrigeration system (SER). In the theoretical analysis, two different refrigerants are employed, R134a and R600, and the cooling coefficient of performance (COP), exergy destruction and exergy efficiency are selected as the performance indices. The performance indices of the DER system are investigated under the variation of the evaporation, and condensing temperatures and results are compared with the SER system operating at the same conditions. In the given conditions, the maximum cooling COP and exergy efficiency are achieved with the DER system by 7.52 and 38.8%, respectively. In the DER system, the minimum exergy destruction occurs with R134a by 9.3 kJ/kg at 10 °C evaporation and 40 °C condensing temperatures. Moreover, 5.3% increments in the cooling COP and exergy efficiency are achieved with R600 when the condenser temperature is 55 °C and the evaporator temperature is 5 °C. The results also showed that the improvements achieved in the cooling COP and exergy efficiency with the DER system are greater at high condensing and low evaporation temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

1–13, 1,2′–13:

State numbers for the DER and the SER systems

e :

Specific exergy flow (kJ/kg)

E :

Exergy flow (kJ/kg)

Ex:

Exergy destruction of any component (kJ/kg)

h :

Specific enthalpy (kJ/kg)

L/V :

Liquid–vapor

\(\dot{m}\) :

Mass flow rate (kg/s)

Q :

Heat load (kJ/kg)

P :

Pressure (kPa)

s :

Specific entropy (kJ/(kg K))

T :

Temperature (°C or K)

V :

Velocity (m/s)

W :

Work (kJ/kg)

x :

Quality

Comp:

Compressor

con:

Condenser

cool:

Cooled medium

CV:

Control volume

DER:

The DER system

dif:

Diffuser sections of the ejectors

eje:

Ejector

eva:

Evaporator

exp:

Expansion valve

heat:

Outside condition

int:

Interstate

mix:

Mixing sections of the ejectors

noz:

Nozzle sections of the ejectors

pump:

Pump

s:

Isentropic state

SER:

The SER system

* :

Increase rate

ω :

Ejector entrainment ratio

η :

Efficiency (%)

COP:

Coefficient of performance

DER:

Dual-ejector refrigeration system

SER:

Single-ejector refrigeration system

References

  1. Sun, D.: Experimental investigation of the performance characteristics of a steam jet refrigeration system. Energy Sources 19, 349–367 (1997)

    Article  Google Scholar 

  2. Ünal, Ş; Erdinç, M.T.; Kutlu, Ç.: Optimal thermodynamic parameters of two-phase ejector refrigeration system for buses. Appl. Therm. Eng. 124, 1354–1367 (2017)

    Article  Google Scholar 

  3. Takleh, H.R.; Zare, V.: Performance improvement of ejector expansion refrigeration cycles employing a booster compressor using different refrigerants: thermodynamic analysis and optimization. Int. J. Refrig. 101, 56–70 (2019)

    Article  Google Scholar 

  4. Zhu, Y.; Li, C.; Zhang, F.; Jiang, P.: Comprehensive experimental study on a transcritical CO2 ejector-expansion refrigeration system. Energy Convers. Manag. 151, 98–106 (2017)

    Article  Google Scholar 

  5. Sumeru, K.; Sulaimon, S.; Nasution, H.; Ani, F.N.: Numerical and experimental study of an ejector as an expansion device in split-type air conditioner for energy savings. Energy Build. 79, 98–105 (2014)

    Article  Google Scholar 

  6. Hassanain, M.; Elgendy, E.; Fatouh, M.: Ejector expansion refrigeration system: ejector design and performance evaluation. Int. J. Refrig. 58, 1–13 (2015)

    Article  Google Scholar 

  7. Kornhauser, A.A.: The use of an ejector as refrigerant expander. In: Proceedings of USNC/IIR-Purdue Refrigeration Conference, USA, pp. 10–19 (1990)

  8. Li, D.; Groll, E.A.: Transcritical CO2 refrigeration cycle with ejector-expansion device. Int. J. Refrig. 28, 766–773 (2005)

    Article  Google Scholar 

  9. Ünal, Ş; Yılmaz, T.; Cihan, E.; Büyüklaca, O.: Coefficient of performance variation with the mass flow rate for the ejector cooling system. Çukurova Univ. J. Fac. Eng. Arch. 28, 61–76 (2013)

    Google Scholar 

  10. Ünal, Ş; Kutlu, Ç.; Erdinç, M.T.: Performance improvement potentials of low global warming potential refrigerants for intercity bus air conditioning system. Therm. Sci. 22, 1515–1524 (2018)

    Article  Google Scholar 

  11. Gündü, İ.: Heating capacity and efficiency increasing with ejector assembly in heat pump. Dissertation, Osmaniye Korkut Ata University (2018)

  12. Shen, S.; Qu, X.; Zhang, B.; Riffat, S.; Gillott, M.: Study of a gas-liquid ejector and its application to a solar-powered bi-ejector refrigeration system. Appl. Therm. Eng. 25, 2891–2902 (2005)

    Article  Google Scholar 

  13. Liu, Y.; Fu, H.; Yu, J.: Performance study of an enhanced ejector refrigeration cycle with flash tank economizer for low-grade heat utilization. Appl. Therm. Eng. 140, 43–50 (2018)

    Article  Google Scholar 

  14. Liu, Y.; Yu, J.; Yan, G.: Theoretical analysis of a double ejector-expansion autocascade refrigeration cycle using hydrocarbon mixture R290/170. Int. J. Refrig. 94, 33–39 (2018)

    Article  Google Scholar 

  15. Bai, T.; Yan, G.; Yu, J.: Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector. Energy 84, 325–335 (2015)

    Article  Google Scholar 

  16. Mondal, S.; De, S.: Performance assessment of a low-grade heat driven dual ejector vapour compression refrigeration cycle. Appl. Therm. Eng. 179, 115782 (2020)

    Article  Google Scholar 

  17. Manjili, F.E.; Cheraghi, M.: Performance of a new two-stage transcritical CO2 refrigeration cycle with two ejectors. Appl. Therm. Eng. 156, 402–409 (2019)

    Article  Google Scholar 

  18. Khalili, S.; Farshi, L.G.: Design and performance evaluation of a double ejector boosted multi-pressure level absorption cycle for refrigeration. Sustain. Energy Technol. Assess. 42, 100836 (2020)

    Google Scholar 

  19. Liang, X.; Zhou, S.; Deng, J.; He, G.; Cai, D.: Thermodynamic analysis of a novel combined double ejector-absorption refrigeration system using ammonia/salt working pairs without mechanical pumps. Energy 185, 895–909 (2019)

    Article  Google Scholar 

  20. Parvez, M.: First and second law analyses of syngas fueled novel combined power and double-ejector refrigeration cycle. Biofuels 8, 143–151 (2017)

    Article  Google Scholar 

  21. Klein, S.A.: Engineering Equation Solver. F-Chart Software (2018)

  22. Brunin, O.; Feidt, M.; Hivet, B.: Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump. Int. J. Refrig. 20, 308–318 (1997)

    Article  Google Scholar 

  23. Dincer, I.; Rosen, M.A.: Exergy, Energy, Environment and Sustainable Development. Elsevier, Oxford (2012)

    Google Scholar 

  24. Al-Abbas, A.H.; Mohammed, A.A.; Hassoon, A.S.: Exergy analysis of shell and helical coil heat exchanger and design optimization. Heat Mass Transf. (2020). https://doi.org/10.1007/s00231-020-02993-9

    Article  Google Scholar 

  25. Yılmaz, T.; Erdinç, M.T.: Energetic and exergetic investigation of a novel refrigeration system utilizing ejector integrated subcooling using different refrigerants. Energy 168, 712–727 (2019)

    Article  Google Scholar 

  26. Li, H.; Cao, F.; Bu, X.; Wang, L.; Wang, X.: Performance characteristics of R1234yf ejector-expansion refrigeration cycle. Appl. Energy. 121, 96–103 (2014)

    Article  Google Scholar 

  27. Tchanche, B.F.; Papadakis, G.; Lambrinos, G.; Frangoudakis, A.: Fluid selection for a low-temperature solar organic Rankine cycle. Appl. Therm. Eng. 29, 2468–2476 (2009)

    Article  Google Scholar 

  28. Saleh, B.; Aly, A.A.; Alogla, A.F.; Aljuaid, A.M.; Alharthi, M.M.; Ahmed, K.I.E.; Hamed, Y.S.: Performance investigation of organic Rankine-vapor compression refrigeration integrated system activated by renewable energy. Mech. Ind. 20, 1–9 (2019)

    Google Scholar 

  29. Bo, Z.; Zhang, K.; Sun, P.; Lv, X.; Weng, Y.: Performance analysis of cogeneration systems based on micro gas turbine (MGT), organic Rankine cycle and ejector refrigeration cycle. Front. Energy 13, 54–63 (2019)

    Article  Google Scholar 

  30. Li, Z.; Jiang, H.; Chen, X.; Liang, K.: Optimal refrigerant charge and energy efficiency of an oil-free refrigeration system using R134a. Appl. Therm. Eng. 164, 1–8 (2020)

    Article  Google Scholar 

  31. Nair, V.; Parekh, A.D.; Tailor, P.R.: Experimental investigation of a vapour compression refrigeration system using R134a/nano-oil mixture. Int. J. Refrig. 112, 21–36 (2020)

    Article  Google Scholar 

  32. Dinarveis, A.: Exergy analysis of vapour compression refrigeration system using R507a, R134a, R114, R22 and R717. Int. J. Energy. Environ. Eng. 13, 355–358 (2019)

    Google Scholar 

  33. Grazzini, G.; Milazzo, A.; Paganini, D.: Design of an ejector cycle refrigeration system. Energy Convers. Manag. 54, 38–46 (2012)

    Article  Google Scholar 

  34. Little, A.B.; Garimella, S.: Comparative assesment of alternative cycles for waste heat recovery and upgrade. Energy 36, 4492–4504 (2011)

    Article  Google Scholar 

  35. Kutlu, Ç.; Ünal, Ş; Erdinç, M.T.: Energy and exergy analyses of bus refrigeration system using two-phase ejector with natural refrigerant R744. Int. J. Exergy 22, 331–351 (2017)

    Article  Google Scholar 

  36. Maximator. http://www.maximator.de/assets/mime/7a51123c735b2aa02712b476a986b644/Operating-Instructions-Pumps-en-2016_09.pdf (2016). Accessed 01 May 2020

  37. Yari, M.: Exergetic analysis of the vapour compression refrigeration cycle using ejector as an expander. Int. J. Exergy 5, 326–340 (2008)

    Article  Google Scholar 

  38. Megdouli, K.; Tashtoush, B.M.; Ezzaalouni, Y.; Nahdi, E.; Mhimid, A.; Kairouani, L.: Performance analysis of a new ejector expansion refrigeration cycle (NEERC) for power and cold: exergy and energy points of view. Appl. Therm. Eng. 122, 39–48 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barış Kavasoğulları.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavasoğulları, B., Cihan, E. & Demir, H. Energy and Exergy Analyses of a Refrigerant Pump Integrated Dual-Ejector Refrigeration (DER) System. Arab J Sci Eng 46, 11633–11644 (2021). https://doi.org/10.1007/s13369-021-05541-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05541-7

Keywords

Navigation