Skip to main content
Log in

Solving Multi-Objective Resource Allocation Problem Using Multi-Objective Binary Artificial Bee Colony Algorithm

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Resource allocation is the optimal distribution in a limited number of resources available for certain activities. The allocation of the resources for a large number of activities requires exponentially multiplying a computation cost. Therefore, the resource allocation problem is known as NP-Hard problem in the literature. In this study, a multi-objective binary artificial bee colony algorithm has been proposed for solving the multi-objective resource allocation problems. The proposed algorithm has benefited from the robust structure and easy implementation properties of the artificial bee colony algorithm. The contribution is to introduce the multi-objective version of the artificial bee colony algorithm with advanced local search and binary format using transfer functions. The multi-objective binary artificial bee colony algorithm has been improved as two versions using sigmoid and hyperbolic tangent transfer functions to be able to search in the binary search space. With the proposed algorithms, the multi-objective resource allocation problems in the literature are solved, and the algorithms are compared with other algorithms that develop for the same problems. The results obtained show that the proposed algorithms give effective results on the problem. Especially, in large-scale problems, higher accuracy values are reached with a smaller number of evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Liang, Y.-C.; Chuang, C.-Y.: Variable neighborhood search for multi-objective resource allocation problems. Robot. Comput.-Integr. Manuf. 29(3), 73–78 (2013). https://doi.org/10.1016/j.rcim.2012.04.015

    Article  Google Scholar 

  2. Karaboga, D. : An idea based on honey bee swarm for numerical optimization. Technical report-tr06, Erciyes University, Engineering Faculty, Computer Engineering Department, 200, 1–10 (2005)

  3. Yilmaz, Z.: Çok Amaçlı Kaynak Tahsis Problemine İkili Yapay Arı Koloni Algoritması Yaklaşımı. Master Thesis, Selçuk University (2017)

  4. Yılmaz Acar, Z.; Aydemir, F.; Başçiftçi, F.: A New Multi-Objective Artificial Bee Colony Algorithm for Multi-Objective Optimization Problems. Selçuk-Teknik Dergisi, 144–152 (2019)

  5. Zou, W.-Q.; Pan, Q.-K.; Meng, T.; Gao, L.; Wang, Y.-L.: An effective discrete artificial bee colony algorithm for multi-AGVs dispatching problem in a matrix manufacturing workshop. Exp. Syst. Appl. (2020). https://doi.org/10.1016/j.eswa.2020.113675

    Article  Google Scholar 

  6. Osman, M.S.; Abo-Sinna, M.A.; Mousa, A.A.: An effective genetic algorithm approach to multi-objective resource allocation problems (MORAPs). Appl. Math. Comput. 163(2), 755–768 (2005). https://doi.org/10.1016/j.amc.2003.10.057

    Article  MathSciNet  MATH  Google Scholar 

  7. Lin, C.-M.; Gen, M.: Multiobjective resource allocation problem by multistage decision-based hybrid genetic algorithm. Appl. Math. Comput. 187(2), 574–583 (2007). https://doi.org/10.1016/j.amc.2006.08.170

    Article  MathSciNet  MATH  Google Scholar 

  8. Lin, C.-M.; Gen, M.: Multi-criteria human resource allocation for solving multistage combinatorial optimization problems using multiobjective hybrid genetic algorithm. Exp. Syst. Appl. 34(4), 2480–2490 (2008). https://doi.org/10.1016/j.eswa.2007.04.016

    Article  Google Scholar 

  9. Chaharsooghi, S.K.; Meimand Kermani, A.H.: An effective ant colony optimization algorithm (ACO) for multi-objective resource allocation problem (MORAP). Appl. Math. Comput. 200(1), 167–177 (2008). https://doi.org/10.1016/j.amc.2007.09.070

    Article  MathSciNet  MATH  Google Scholar 

  10. Fan, K.; You, W.; Li, Y.: An effective modified binary particle swarm optimization (mBPSO) algorithm for multi-objective resource allocation problem (MORAP). Appl. Math. Comput. 221, 257–267 (2013). https://doi.org/10.1016/j.amc.2013.06.039

    Article  MathSciNet  MATH  Google Scholar 

  11. Hussein, M.L.; Abo-Sinna, M.A.: A fuzzy dynamic approach to the multicriterion resource allocation problem. Fuzzy Sets Syst. 69(2), 115–124 (1995). https://doi.org/10.1016/0165-0114(94)00231-U

    Article  MathSciNet  Google Scholar 

  12. Li, J.-Q.; Han, Y.-Q.: A hybrid multi-objective artificial bee colony algorithm for flexible task scheduling problems in cloud computing system. Clust. Comput. 23(4), 2483–2499 (2020). https://doi.org/10.1007/s10586-019-03022-z

    Article  Google Scholar 

  13. Li, Y.; Huang, W.; Wu, R.; Guo, K.: An improved artificial bee colony algorithm for solving multi-objective low-carbon flexible job shop scheduling problem. Appl. Soft Comput. (2020). https://doi.org/10.1016/j.asoc.2020.106544

    Article  Google Scholar 

  14. Xie, J.; Gao, L.; Pan, Q.-K.; Tasgetiren, M.F.: An effective multi-objective artificial bee colony algorithm for energy efficient distributed job shop scheduling. Procedia Manuf. 39, 1194–1203 (2019). https://doi.org/10.1016/j.promfg.2020.01.350

    Article  Google Scholar 

  15. Gong, D.; Han, Y.; Sun, J.: A novel hybrid multi-objective artificial bee colony algorithm for blocking lot-streaming flow shop scheduling problems. Knowl.-Based Syst. 148, 115–130 (2018). https://doi.org/10.1016/j.knosys.2018.02.029

    Article  Google Scholar 

  16. Panda, M., Dehuri, S., Jagadev, A.K.: Multi-Objective Artificial Bee Colony Algorithms and Chaotic-TOPSIS Method for Solving Flowshop Scheduling Problem and Decision Making. Informatica 44(2) (2020)

  17. Zhou, J.; Liao, X.; Ouyang, S.; Zhang, R.; Zhang, Y.: Multi-objective artificial bee colony algorithm for short-term scheduling of hydrothermal system. Int J Elec Power 55, 542–553 (2014). https://doi.org/10.1016/j.ijepes.2013.10.013

    Article  Google Scholar 

  18. Alrezaamiri, H., Ebrahimnejad, A., Motameni, H.: Parallel multi-objective artificial bee colony algorithm for software requirement optimization. Requirements Engineering, 1-18 (2020)

  19. Saad, A.; Khan, S.A.; Mahmood, A.: A multi-objective evolutionary artificial bee colony algorithm for optimizing network topology design. Swarm Evol Comput 38, 187–201 (2018). https://doi.org/10.1016/j.swevo.2017.07.010

    Article  Google Scholar 

  20. Zhou, J.; Yao, X.; Lin, Y.; Chan, F.T.S.; Li, Y.: An adaptive multi-population differential artificial bee colony algorithm for many-objective service composition in cloud manufacturing. Inf. Sci. 456, 50–82 (2018). https://doi.org/10.1016/j.ins.2018.05.009

    Article  MathSciNet  Google Scholar 

  21. Ma, K.; Liu, X.; Li, G.; Hu, S.; Yang, J.; Guan, X.: Resource allocation for smart grid communication based on a multi-swarm artificial bee colony algorithm with cooperative learning. Eng. Appl. Artif. Intell. 81, 29–36 (2019). https://doi.org/10.1016/j.engappai.2018.12.002

    Article  Google Scholar 

  22. Xu, X.; Hao, J.; Zheng, Y.: Multi-objective artificial bee colony algorithm for multi-stage resource leveling problem in sharing logistics network. Comput. Ind. Eng. (2020). https://doi.org/10.1016/j.cie.2020.106338

    Article  Google Scholar 

  23. Baradaran, V.; Shafaei, A.; Hosseinian, A.H.: Stochastic vehicle routing problem with heterogeneous vehicles and multiple prioritized time windows: mathematical modeling and solution approach. Comput. Ind. Eng. 131, 187–199 (2019). https://doi.org/10.1016/j.cie.2019.03.047

    Article  Google Scholar 

  24. Yong, Z.; Chun-lin, H.; Xian-fang, S.; Xiao-yan, S.: A multi-strategy integrated multi-objective artificial bee colony for unsupervised band selection of hyperspectral images. Swarm Evol. Comput. (2021). https://doi.org/10.1016/j.swevo.2020.100806

    Article  Google Scholar 

  25. Wang, X.-H.; Zhang, Y.; Sun, X.-Y.; Wang, Y.-L.; Du, C.-H.: Multi-objective feature selection based on artificial bee colony: an acceleration approach with variable sample size. Appl. Soft Comput. (2020). https://doi.org/10.1016/j.asoc.2019.106041

    Article  Google Scholar 

  26. Zhang, Y.; Cheng, S.; Shi, Y.; Gong, D.-W.; Zhao, X.: Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm. Exp. Syst. Appl. 137, 46–58 (2019). https://doi.org/10.1016/j.eswa.2019.06.044

    Article  Google Scholar 

  27. Hancer, E.; Xue, B.; Zhang, M.; Karaboga, D.; Akay, B.: Pareto front feature selection based on artificial bee colony optimization. Inf. Sci. 422, 462–479 (2018). https://doi.org/10.1016/j.ins.2017.09.028

    Article  Google Scholar 

  28. Kashan, M.H.; Nahavandi, N.; Kashan, A.H.: DisABC: A new artificial bee colony algorithm for binary optimization. Appl. Soft Comput. 12(1), 342–352 (2012)

    Article  Google Scholar 

  29. Kiran, M.S.; Gündüz, M.: XOR-based artificial bee colony algorithm for binary optimization. Turkish J. Electr Eng Comput. Sci. 21(2), 2307–2328 (2013)

    Article  Google Scholar 

  30. Jia, D.; Duan, X.; Khan, M.K.: Binary artificial bee colony optimization using bitwise operation. Comput. Ind. Eng. 76, 360–365 (2014). https://doi.org/10.1016/j.cie.2014.08.016

    Article  Google Scholar 

  31. He, Y.; Xie, H.; Wong, T.-L.; Wang, X.: A novel binary artificial bee colony algorithm for the set-union knapsack problem. Future Gen. Comput. Syst. 78, 77–86 (2018). https://doi.org/10.1016/j.future.2017.05.044

    Article  Google Scholar 

  32. Santana, C.J.; Macedo, M.; Siqueira, H.; Gokhale, A.; Bastos-Filho, C.J.A.: A novel binary artificial bee colony algorithm. Future Gen. Comput. Syst. 98, 180–196 (2019). https://doi.org/10.1016/j.future.2019.03.032

    Article  Google Scholar 

  33. Karaboga, N.; Latifoglu, F.: Adaptive filtering noisy transcranial Doppler signal by using artificial bee colony algorithm. Eng. Appl. Artifi. Intell. 26(2), 677–684 (2013). https://doi.org/10.1016/j.engappai.2012.10.011

    Article  Google Scholar 

  34. Karaboga, D.: Yapay Zeka Optimizasyon Algoritmaları, Third ed. Nobel Akademik Publishing, (2014)

  35. Zou, W.P.; Zhu, Y.L.; Chen, H.N.; Zhang, B.W.: Solving multiobjective optimization problems using artificial bee colony algorithm. Discrete Dyn. Nat. Soc. (2011). https://doi.org/10.1155/2011/569784

    Article  MathSciNet  MATH  Google Scholar 

  36. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. Ieee Sys Man Cybern, 4104-4108 (1997).

  37. Rodrigues, D., Pereira, L.A.M., Almeida, T.N.S., Papa, J.P., Souza, A.N., Ramos, C.C.O., Yang, X.S.: BCS: A Binary Cuckoo Search Algorithm for Feature Selection. Ieee Int Symp Circ S, 465-468 (2013).

  38. Emary, E.; Zawbaa, H.M.; Hassanien, A.E.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 371–381 (2016). https://doi.org/10.1016/j.neucom.2015.06.083

    Article  Google Scholar 

  39. Deng, C., Zhao, B., Yang, Y., Deng, A.: Novel Binary Differential Evolution Algorithm for Discrete Optimization. In: 2009 Fifth International Conference on Natural Computation, 14-16 Aug. 2009 2009, pp. 346-349

  40. Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S.: BGSA: binary gravitational search algorithm. Nat. Comput. 9(3), 727–745 (2010). https://doi.org/10.1007/s11047-009-9175-3

    Article  MathSciNet  MATH  Google Scholar 

  41. Mirjalili, S.; Lewis, A.: S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)

    Article  Google Scholar 

  42. Mirjalili, S.; Hashim, S.Z.M.: BMOA: binary magnetic optimization algorithm. Int. J. Mach. Learn. Comput. 2(3), 204–208 (2012)

    Article  Google Scholar 

  43. Chandrasekaran, K., Simon, S.P.: Binary/real coded particle swarm optimization for unit commitment problem. In: 2012 International Conference on Power, Signals, Controls and Computation, 3-6 Jan. 2012 2012, pp. 1-6

  44. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  45. Sag, T.; Cunkas, M.: A new ABC-based multiobjective optimization algorithm with an improvement approach (IBMO: improved bee colony algorithm for multiobjective optimization). Turk J. Electr. Eng. Co 24(4), 2349–2373 (2016)

    Article  Google Scholar 

  46. Czyzżak, P.; Jaszkiewicz, A.: Pareto simulated annealing—a metaheuristic technique for multiple-objective combinatorial optimization. J. Multi-Crit. Decis. Anal. 7(1), 34–47 (1998)

    Article  Google Scholar 

  47. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Evolutionary Computation, 2002. CEC '02. Proceedings of the 2002 Congress on, 12-17 May 2002 2002, pp. 711-716

  48. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Fonseca, V.G.d. : Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003). https://doi.org/10.1109/TEVC.2003.810758

    Article  Google Scholar 

Download references

Acknowledgement

Appreciations to Selçuk University Instructor Training Program Unit for their financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuleyha Yilmaz Acar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz Acar, Z., Başçiftçi, F. Solving Multi-Objective Resource Allocation Problem Using Multi-Objective Binary Artificial Bee Colony Algorithm. Arab J Sci Eng 46, 8535–8547 (2021). https://doi.org/10.1007/s13369-021-05521-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05521-x

Keywords

Navigation