Skip to main content
Log in

Experimental Investigation of Inner Nozzle Surface Modifications on the Flow Regimes in Steam/Water Flow

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Mixing of two phase flows can be enhanced by modifying the inner surface of gas/vapor injection chamber. In the present study, we perform experimental PIV investigation focusing the planar region across the supersonic steam jet injection into the water in a transparent rectangular duct 4 ft high. Axial pressure profile of the rectangular channel is obtained to highlight the impact of inner surface modifications of supersonic nozzle on the steam-water interfacial hydrodynamics for inlet pressure ranging between 1.5 and 3.0 bars. Results show elongation of the vortical structures with increase in pressure. The profile of the spatial scalar fluctuations intensity decreases with peaks at certain locations indicating formation of shocks within the steam jet in the upstream region. Turbulence induced mixing is observed as the interfacial structure breaks down causing local minima. However, due to the inner surface modifications the local minima shifted from the nozzle’s exit up to 1.7% lengthwise than the smooth inner surface. The intensity of high pressure locations are found to be vary between 4 and 5% along the flow channel. However, due to the inner surface modifications, the lengths of the high pressure crests reduced by 3.4–5.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhatti, M.M.; Lu, D.Q.: Analytical Study of the Head-On Collision Process between Hydroelastic Solitary Waves in the Presence of a Uniform Current. Symmetry 11, 333 (2019)

    Article  Google Scholar 

  2. Trung Nguyen-Thoi, M.M.; Bhatti, J.A.; Ali, S.M.; Hamad, M.S.; Shafee, A.; Haq, R.-u: Analysis on the heat storage unit through a Y-shaped fin for solidification of NEPCM. J. Mol. Liq. 292, 11138 (2019)

    Google Scholar 

  3. Jha, B.; Cueto-Felgueroso, L.; Juanes, R.: Fluid mixing from viscous fingering. Phys. Rev. Lett. 106, 194502 (2011). https://doi.org/10.1103/PhysRevLett.106.194502

    Article  Google Scholar 

  4. Jin, S.Y.; Liu, Y.Z.; Wang, W.Z.; Cao, Z.M.; Koyama, H.S.: Numerical evaluation of two-fluid mixing in a swirl micro-mixer. J. Hydrodyn. 18, 542–546 (2006). https://doi.org/10.1016/S1001-6058(06)60132-7

    Article  MATH  Google Scholar 

  5. Ansari, M.A.; Kim, K.Y.: Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel. Chem. Eng. J. 146, 439–448 (2009). https://doi.org/10.1016/j.cej.2008.10.006

    Article  Google Scholar 

  6. Zaman, K.B.M.Q.; Reeder, M.F.; Samimy, M.: Control of an axisymmetric jet using vortex generators. Phys. Fluids. 6, 778–793 (1994). https://doi.org/10.1063/1.868316

    Article  Google Scholar 

  7. Samimy, M.; Zaman, K.B.M.Q.; Reeder, M.F.: Effect of tabs on the flow and noise field of an axisymmetrie jet. AIAA J. 31, 609–619 (1993). https://doi.org/10.2514/3.11594

    Article  Google Scholar 

  8. Grinstein, F.F.; Gutmark, E.J.; Parr, T.P.; Hanson-Parr, D.M.; Obeysekare, U.: Streamwise and spanwise vortex interaction in an axisymmetric jet. A computational and experimental study. Phys. Fluids. 8, 1515–1524 (1996). https://doi.org/10.1063/1.868927

    Article  Google Scholar 

  9. Hussain, A.K.M.F.; Zedan, M.F.: Effects of the initial condition on the axisymmetric free shear layer: effect of the initial fluctuation level. Phys. Fluids. 21, 1475–1481 (1978). https://doi.org/10.1063/1.862410

    Article  Google Scholar 

  10. Morris, P.J.; McLaughlin, D.K.; Kuo, C.W.: Noise reduction in supersonic jets by nozzle fluidic inserts. J. Sound Vib. 332, 3992–4003 (2013). https://doi.org/10.1016/j.jsv.2012.11.023

    Article  Google Scholar 

  11. Pannu, S.S.; Johannesen, N.H.: The structure of jets from notched nozzles. J. Fluid Mech. 74, 515–528 (1976). https://doi.org/10.1017/S0022112076001924

    Article  Google Scholar 

  12. Seiner, JM., L.S. Ukeiley LS., Jansen, BJ., (2005) Aero-performance efficient noise reduction for the F404–400 engine. In: Collect. Tech. Pap.-11th AIAA/CEAS Aeroacoustics Conf., 2005: pp. 3074–3086. doi:https://doi.org/10.2514/6.2005-3048.

  13. Hileman, J.; Samimy, M.: Effects of vortex generating tabs on noise sources in an ideally expanded mach 1.3 jet. Int. J. Aeroacoustics. 2, 35–63 (2003). https://doi.org/10.1260/147547203322436935

    Article  Google Scholar 

  14. Bridges, J., Wernet, MP., Frate, FC., (2011) PIV measurements of chevrons on f400-series tactical aircraft nozzle model. In: 49th AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., American Institute of Aeronautics and Astronautics Inc., 2011. https://doi.org/10.2514/6.2011-1157

  15. Munday, D.; Heeb, N.; Gutmark, E.; Liu, J.; Kailasanath, K.: Acoustic effect of chevrons on supersonic jets exiting conical convergent-divergent nozzles. AIAA J. 50, 2336–2350 (2012). https://doi.org/10.2514/1.J051337

    Article  Google Scholar 

  16. Kuo, C.W.; Veltin, J.; McLaughlin, D.K.: Acoustic assessment of small-scale military-style nozzles with chevrons. Noise Control Eng. J. 60, 559–576 (2012). https://doi.org/10.3397/1.3701033

    Article  Google Scholar 

  17. Seiner, JM., Ukeiley, LS., Jansen BJ, Kannepalli, C., Dash, S., Noise reduction technology for F/A-18 E/F aircraft. In: Collect. Tech. Pap. - 10th AIAA/CEAS Aeroacoustics Conf., 2004: pp. 1938–1950. https://doi.org/10.2514/6.2004-2972

  18. Long, D., McDonald, T., Maye, P.,(2010) Effect of inlet flow conditions on noise and performance of supersonic nozzles. In: 16th AIAA/CEAS Aeroacoustics Conf. (31st AIAA Aeroacoustics Conf., American Institute of Aeronautics and Astronautics Inc., 2010. https://doi.org/10.2514/6.2010-3920

  19. Henderson, B., Bridges, J., (2010) An MDOE investigation of chevrons for supersonic jet noise reduction. In: 16th AIAA/CEAS aeroacoustics Conf. (31st AIAA Aeroacoustics Conf., 2010. https://doi.org/10.2514/6.2010-3926

  20. Martens, S., Spyropoulos, JT., (2010) Practical jet noise reduction for tactical aircraft. In: Proc. ASME turbo expo, american society of mechanical engineers digital collection, 2010: pp. 389–399. doi:https://doi.org/10.1115/GT2010-23699

  21. Schlinker, R., Simonich, J., Reba, R., (2011) Flight effects on supersonic jet noise from chevron nozzles.In: 17th AIAA/CEAS Aeroacoustics Conf. (32nd AIAA Aeroacoustics Conf., American Institute of Aeronautics and Astronautics, Reston, Virigina, 2011. https://doi.org/10.2514/6.2011-2703

  22. Rao, S.M.V.; Jagadeesh, G.: Vector evaluated particle swarm optimization (VEPSO) of supersonic ejector for hydrogen fuel cells. J. Fuel Cell Sci. Technol. 7, 0410141–0410147 (2010). https://doi.org/10.1115/1.4000676

    Article  Google Scholar 

  23. Dadvar, M.; Afshari, E.: Analysis of design parameters in anodic recirculation system based on ejector technology for PEM fuel cells: a new approach in designing. Int. J. Hydrogen Energy. 39, 12061–12073 (2014). https://doi.org/10.1016/j.ijhydene.2014.06.046

    Article  Google Scholar 

  24. Nikolaev, VD., Hager, GD., Svistun, MI., Zagidullin MV., (2005) Ejector COIL with supersonic nozzles for driver N 2, in: XV Int. Symp. Gas Flow, Chem. Lasers, High-Power Lasers, SPIE, 2005: p. 160. https://doi.org/10.1117/12.610990

  25. Tei, K., Hirioka, K., Shiho, M., Jyosui,K., Miyagawa, M., Fujioka, T., (2006) Ejector COIL with supersonic nozzle bank based on trip-jet mixing system, in: XVI Int. Symp. Gas Flow, Chem. Lasers, High-Power Lasers, SPIE, 2006: p. 63460G. https://doi.org/10.1117/12.737184

  26. Singhal, G.; Mainuddin, R.K.; Tyagi, A.L.; Dawar, P.M.V.: Subbarao, Pressure recovery studies on a supersonic COIL with central ejector configuration. Opt. Laser Technol. 42, 1145–1153 (2010). https://doi.org/10.1016/j.optlastec.2010.02.011

    Article  Google Scholar 

  27. Kracík, J.; Dvoák, V.; Kolá, J.: Development of air to air ejector for supersonic wind tunnel. EPJ Web Conf. 67, 02059 (2014). https://doi.org/10.1051/epjconf/20146702059

    Article  Google Scholar 

  28. Brian, P.W.; Anthony, J.R.: Nozzle geometry effects in liquid jet array impingement. Appl. Therm. Eng. 29(11–12), 2211–2221 (2009)

    Google Scholar 

  29. Elangovan, S.; Rathakrishnan, E.: Studies on high speed jets from nozzles with internal grooves. Aeronautical J. 108(1079), 43–50 (2004)

    Article  Google Scholar 

  30. Buhl, S.; Breuninger, P.; Antonyuk, S.: Optimization of a laval nozzle for energy-efficient cold spraying of microparticles. Mater. Manuf. Processes 33(2), 115–122 (2018)

    Article  Google Scholar 

  31. Soyama, H.: Effect of nozzle geometry on a standard cavitation erosion test using a cavitating jet. Wear 297(1–2), 895–902 (2013)

    Article  Google Scholar 

  32. Zhao, J.; Ning, Z.; Lv, M.: Experimental study on the two-phase flow pattern and transformation characteristics of a flow mixing nozzle under a moderate flow rate. Meccanica 54, 1121–1133 (2019). https://doi.org/10.1007/s11012-019-01014-2

  33. Li, D.; Kang, Y.; Wang, X.; Ding, X.; Fang, Z.: Effects of nozzle inner surface roughness on the cavitation erosion characteristics of high speed submerged jets. Exp. Therm. Fluid Sci. 74, 444–452 (2016)

    Article  Google Scholar 

  34. Li, D.; Kang, Y.; Ding, X.; Wang, X.; Fang, Z.: Effects of nozzle inner surface roughness on the performance of self-resonating cavitating waterjets under different ambient pressures. Strojniški vestnik – J. Mech. Eng. 63(2), 92–102 (2017)

    Article  Google Scholar 

  35. Chang, S.W.; Shen, H.-D.: Heat transfer of impinging jet array with web-patterned grooves on nozzle plate. Int. J. Heat Mass Transf. 141, 129–144 (2019)

    Article  Google Scholar 

  36. Dabiri, D., Cross-correlation digital particle image velocimetry–a review. https://www.aa.washington.edu/sites/aa/files/faculty/dabiri/pubs/piV.Review.Paper.final.pdf

  37. Alkislar, A., Lourenco, MB., Krothapalli, LM (2020) Stereoscopic PIV measurements of a screeching supersonic jet-IOS Press, (n.d.). https://content.iospress.com/articles/journal-of-visualization/jov3-2-06 (accessed July 20, 2020)

  38. Dabiri, D.: Cross-correlation digital particle image velocimetry–a review. Department of Aeronautics & Astronautics Box 352400 University of Washington Seattle, WA, 98195. https://www.aa.washington.edu/sites/aa/files/faculty/dabiri/pubs/piV.Review.Paper.final.pdf

  39. Burak, MO., Eriksson, LE., Munday, D.,Gutmark, E., Prisell E., Experimental and numerical investigation of a supersonic C-D chevron nozzle. In: 39th AIAA Fluid Dyn. Conf., 2009. https://doi.org/10.2514/6.2009-4004

  40. Desevaux, P., Hostache, G., Jacquet, P., (1994) Static pressure measurement along the centerline of an induced flow ejector. Exp Fluids 16, 289–291 (1994). https://doi.org/10.1007/BF00206550

  41. Ariafar, K.; Buttsworth, D.; Sharifi, N.; Malpress, R.: Ejector primary nozzle steam condensation: area ratio effects and mixing layer development. Appl. Therm. Eng. 71, 519–527 (2014). https://doi.org/10.1016/j.applthermaleng.2014.06.038

    Article  Google Scholar 

  42. Dvorak, V., Safarik, P. Supersonic flow structure in the entrance part of a mixing chamber of 2D model ejector. J. Therm. Sci. 12, 344–349 (2003). https://doi.org/10.1007/s11630-003-0042-8

  43. Chunnanond, K.; Aphornratana, S.: An experimental investigation of a steam ejector refrigerator: the analysis of the pressure profile along the ejector. Appl. Therm. Eng. 24, 311–322 (2004). https://doi.org/10.1016/j.applthermaleng.2003.07.003

    Article  Google Scholar 

  44. Rao, S.M.V.; Asano, S.; Saito, T.: Comparative studies on supersonic free jets from nozzles of complex geometry. Appl. Therm. Eng. 99, 599–612 (2016). https://doi.org/10.1016/j.applthermaleng.2016.01.104

    Article  Google Scholar 

  45. Karthick, S.K.; Rao, S.M.V.; Jagadeesh, G.; Reddy, K.P.J.: Parametric experimental studies on mixing characteristics within a low area ratio rectangular supersonic gaseous ejector. Phys. Fluids. 28, 076101 (2016). https://doi.org/10.1063/1.4954669

    Article  Google Scholar 

  46. Moreno, D.; Krothapalli, A.; Alkislar, M.B.; Lourenco, L.M.: Low-dimensional model of a supersonic rectangular jet. Phys. Rev. E. 69, 026304 (2004). https://doi.org/10.1103/PhysRevE.69.026304

    Article  Google Scholar 

  47. Khan, A.; Sanaullah, K.; Sobri Takriff, M.; Hussain, A.; Shah, A.; Rafiq Chughtai, I.: Void fraction of supersonic steam jet in subcooled water. Flow Meas. Instrum. 47, 35–44 (2016). https://doi.org/10.1016/J.FLOWMEASINST.2015.12.002

    Article  Google Scholar 

  48. Khan, A.; Sanaullah, K.; Sobri Takriff, M.; Zen,H.; Soh Fong, L.; Shah, A.: CFD Based Hydrodynamic Parametric Study of Inclined Injected Supersonic Steam into Subcooled Water. (2014). https://doi.org/10.3850/978-981-09-4587-9_P03

  49. Afrasyab, K.; Sanaullah, K.; Takriff, M.S.; Zen, H.; Fong, L.S.: Inclined injection of supersonic steam into subcooled water: a CFD analysis. Adv. Mater. Res. 845, 101–107 (2013) https://doi.org/10.4028/www.scientific.net/AMR.845.101

    Article  Google Scholar 

  50. Khan, A.; Sanaullah, K.; Haq, N.U.: Development of a sensor to detect condensation of super-sonic steam. Adv. Mater. Res. 650, 482–487 (2013)https://doi.org/10.4028/www.scientific.net/AMR.650.482

    Article  Google Scholar 

  51. Mehmood, M.A.; Ibrahim, M.A.; Ullah, A.; Inayat, M.H.: CFD study of pressure loss characteristics of multi-holed orifice plates using central composite design. Flow Measurement Instrum. 70, 101654 (2019)

    Article  Google Scholar 

  52. Shafiq, F.; Ullah, A.; Nadeem, M.; Khan, A.; Ullah, A.: Natural convection heat transfer in an enclosed assembly of thin vertical cylinders – a CFD study. Chem Eng. Technol. 43, 1648–1658 (2020)

    Article  Google Scholar 

  53. Sciacchitano, A., (2019). Uncertainty quantification in particle image velocimetry. Measurement Sci. Technol. https://doi.org/10.1088/1361-6501/ab1db8

  54. Osman, A.B.; Ovinis, M.; Faye, I.; Hashim, F.M.; Osei, H.: An optical flow measurement technique based on continuous wavelet transform. J. Appl. Fluid Mech. 11(3), 695–707 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to the Russian Government and Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation for their support to this work through Act 211 Government of the Russian Federation, contract No. 02. A03.21.0011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afrasyab Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Sanaullah, K., Konstantinovich, S.E. et al. Experimental Investigation of Inner Nozzle Surface Modifications on the Flow Regimes in Steam/Water Flow. Arab J Sci Eng 47, 5555–5565 (2022). https://doi.org/10.1007/s13369-021-05520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05520-y

Keywords

Navigation