Skip to main content

Advertisement

Log in

Evaluation of Different Flare Gas Recovery Alternatives with Exergy and Exergoeconomic Analyses

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Natural gas flaring is considered one of the significant sources of greenhouse gas emissions in the upstream oil and gas industry. It plays an essential role in reducing the energy efficiency of oil and gas production. Depending on flare gas properties, it can be used for different destinations. Herein, we have evaluated the main flare gas recovery alternatives, including sweet gas production, Gas to Liquid (GTL), and power generation, by using exergy and exergoeconomic analysis tools. For this purpose, flare gas condition in two phases of the Pars Special Economic Energy Zone in south of Iran was chosen as a case study. The mass sensitivity analysis is conducted to examine the processes in different flare gas volumes. Mass flow fluctuation analysis is carried out to analyze the effect of mass flow fluctuation as an intrinsic characteristic of flare systems. Results indicate that the production of electrical power from flaring gas is an economical method regarding the exergoeconomic criteria. While the power generation process has disadvantages such as high exergy destruction and high capital cost, advantages such as higher revenue, local potentials for designing, equipment, and construction should be regarded. On the other hand, the sweetening plant has the highest exergetic efficiency rather than other substitutes. This method also has a lower exergoeconomic factor, especially in lower flaring volume. The mass flow sensitivity analysis in these processes shows the GTL production unit's appropriate performance in low flare gas volume. The results also offer the superior performance of sweetening plants in high flare gas volume. Combined Cycle Power Plant (CCPP) process shows an acceptable performance in a broad range of flare gas volumes. Additionally, mass flow fluctuation analysis has been conducted to determine the effect of mass flow fluctuation in these alternatives. The investigation suggested that the CCPP process has lower fluctuation in terms of cycle product (power generation).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

\(\dot{C}\) :

Cost rate ($/h)

\(\dot{C}_{D}\) :

Cost rate of exergy destruction ($/h)

\(\mathop {{\mathrm{Ex}}}\limits^{ \cdot }\) :

Exergy rate (kW)

\(\dot{m}\) :

Mass flow rate (kg/s)

\(\dot{W}\) :

Work rate (kW)

\(\dot{Z}\) :

Investment, operation and maintenance cost rate ($/h)

c :

Cost per exergy unit ($/GJ)

\(c_{F}\) :

Unit cost of the fuel ($/GJ)

\(c_{P}\) :

Unit cost of the product ($/GJ)

e :

Specific exergy (kJ/kg)

f :

Exergoeconomic factor (%)

h :

Specific enthalpy (kJ/kg)

I :

Irreversibility or exergy destruction (kW)

P :

Pressure

r :

Relative cost difference (%)

s :

Specific entropy (kJ/kg-C)

T :

Temperature (°C)

x :

Mole fraction

Z :

Purchased equipment cost

ε :

Exergetic efficiency (%)

\(\varphi\) :

Maintenance factor

0:

Reference state

AC:

Air cooler

Air comp:

Air compressor

ATR:

Autothermal reactor

ASF:

Anderson–Schulz Flory

bcm:

Billion cubic meters

C:

Compressor

CC:

Combustion chamber

CCPP:

Combined cycle power plant

CCS:

Carbon capture and storage

ch:

Chemical

CHP:

Combined heat and power

CRF:

Capital recovery factor

D:

Destruction

DEA:

Diethanol amine

DME:

Dimethyl ether

E:

Heat exchanger

F:

Fuel

FGR:

Flare gas recovery

FT:

Fischer–Tropsch

GT:

Gas turbine

GTE:

Gas to ethylene

GTG:

Gas turbines generation

GTL:

Gas to liquid

HRSG:

Heat recovery steam generator

HP:

High pressure

i:

Inlet

k :

kTh component

L:

Loss

LHV:

Lower heating value

LNG:

Liquefied natural gas

Mix:

Mixer

MMSCFD:

Million standard cubic feet per day

o:

Outlet

P:

Product

ph:

Physical

PEC:

Purchased equipment cost

ROR:

Rate of return

ST:

Steam turbine

TEE:

Splitter

V:

Vessel

VLV:

Valve

W:

Related to work

References

  1. Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M.: A fifteen year record of global natural gas flaring derived from satellite data. Energies 2, 595–622 (2009)

    Article  Google Scholar 

  2. Farina, M.F.: Flare gas reduction—recent global and policy considerations. In: GE Energy, Global Strategy and Planning, (2010)

  3. Zolfaghari, M.; Pirouzfar, V.; Sakhaeinia, H.: Technical characterization and economic evaluation of recovery of flare gas in various gas-processing plants. Energy 124, 481–491 (2017). https://doi.org/10.1016/j.energy.2017.02.084

    Article  Google Scholar 

  4. GROUP, W.B.: Flared Gas Utilization Strategy, Opportunities for Small-Scale Uses of Gas. In: The International Bank for Reconstruction and Development/The World Bank, Washington, (2004)

  5. United Nations, F.C.C.C.: Adoption of the Paris Agreement, Conference of the Parties, Twenty-first session. In: Paris, (30 November to 11 December 2015)

  6. Soltanieh, M.; Zohrabian, A.; Gholipour, M.J.; Kalnay, E.: A review of global gas flaring and venting and impact on the environment: case study of Iran. Int. J. Greenhouse Gas Control 49, 488–509 (2016). https://doi.org/10.1016/j.ijggc.2016.02.010

    Article  Google Scholar 

  7. Davoudi, M.; Rahimpour, M.R.; Jokar, S.M.; Nikbakht, F.; Abbasfard, H.: The major sources of gas flaring and air contamination in the natural gas processing plants: a case study. J. Nat. Gas Sci. Eng. 13, 7–19 (2013). https://doi.org/10.1016/j.jngse.2013.03.002

    Article  Google Scholar 

  8. Hajizadeh, A.; Mohamadi-Baghmolaei, M.; Azin, R.; Osfouri, S.; Heydari, I.: Technical and economic evaluation of flare gas recovery in a giant gas refinery. Chem. Eng. Res. Des. 131, 506–519 (2018). https://doi.org/10.1016/j.cherd.2017.11.026

    Article  Google Scholar 

  9. Bank, T.W.: Flared gas utilization strategy opportunities for smallscale uses of gas. In. The International Bank for Reconstruction and Development, Washington, DC, (2004)

  10. Azin, R.; Asgari, M.; Osfouri, S.; Fatehi, R.; Mehrabi, N.: Geological identification and storage capacity of suitable formation for CO2 disposal in Eastern Zagros (Fars area), Iran. Environ. Stud. Persian Gulf 2(1), 45–55 (2015)

    Google Scholar 

  11. Azin, R.; Mehrabi, N.; Shahriar, O.; Asgari, M.: An overview of CCS road map and identification of a suitable CO2 disposal site in Eastern Zagros (Fars Area) in Iran. Proc. Earth Planet. Sci. 15, 407–412 (2015). https://doi.org/10.1016/j.proeps.2015.08.020

    Article  Google Scholar 

  12. Azin, R.; Malakooti, R.; Helalizadeh, A.; Zirrahi, M.: Investigation of underground sour gas storage in a depleted gas reservoir. Oil Gas Sci. Technol. Rev. IFP Energies nouvelles 69(7), 1227–1236 (2014)

    Article  Google Scholar 

  13. Mourad, D.; Ghazi, O.; Noureddine, B.: Recovery of flared gas through crude oil stabilization by a multi-staged separation with intermediate feeds: a case study. Korean J. Chem. Eng. 26(6), 1706–1716 (2009). https://doi.org/10.1007/s11814-009-0236-1

    Article  Google Scholar 

  14. Beal, C.M.; Davidson, F.T.; Webber, M.E.; Quinn, J.C.: Flare gas recovery for algal protein production. Algal Res. 20, 142–152 (2016). https://doi.org/10.1016/j.algal.2016.09.022

    Article  Google Scholar 

  15. Dong, L.; Wei, S.; Tan, S.; Zhang, H.: GTL or LNG: which is the best way to monetize “stranded” natural gas? Petrol. Sci. 5(4), 388–394 (2008). https://doi.org/10.1007/s12182-008-0063-8

    Article  Google Scholar 

  16. Bachu, S.; Gunter, W.D.: Overview of acid-gas injection operations in Western Canada A2—Wilson, E.S. Rubin, D.W. Keith, C.F. Gilboy, M. In: Thambimuthu, T.M.G. (ed.) Greenhouse Gas Control Technologies 7. pp. 443–448. Elsevier Science Ltd, Oxford (2005)

  17. Zadakbar, O.A.V.A.K.K.: Flare gas recovery in oil and gas refineries. Oil Gas Sci. Technol. 63, 705–711 (2008)

    Article  Google Scholar 

  18. Castelo Branco, D.A.; Szklo, A.S.; Schaeffer, R.: Co2e emissions abatement costs of reducing natural gas flaring in Brazil by investing in offshore GTL plants producing premium diesel. Energy 35(1), 158–167 (2009). https://doi.org/10.1016/j.energy.2009.09.006

    Article  Google Scholar 

  19. Rahimpour, M.R.; Ghorbani, A.; Asiaee, A.; Shariati, A.: Conversion of refinery natural purge gases to liquid hydrocarbons in GTL loop with hydrogen-permselective membranes: an alternative to gas flaring. J. Nat. Gas Sci. Eng. 3(3), 461–475 (2011). https://doi.org/10.1016/j.jngse.2011.04.004

    Article  Google Scholar 

  20. Mohammad, R.; Rahimpour, S.M.J.: Feasibility of flare gas reformation to practical energy in Farashband gas refinery: no gas flaring. J. Hazard. Mater. 209–210, 204–217 (2012)

    Google Scholar 

  21. Rahimpour, M.R.; Jamshidnejad, Z.; Jokar, S.M.; Karimi, G.; Ghorbani, A.; Mohammadi, A.H.: A comparative study of three different methods for flare gas recovery of Asalooye Gas Refinery. J. Nat. Gas Sci. Eng. 4, 17–28 (2012)

    Article  Google Scholar 

  22. Ghorbani, A.; Jafari, M.; Rahimpour, M.R.: A comparative simulation of a novel gas to liquid (GTL) conversion loop as an alternative to a certain refinery gas flare. J. Nat. Gas Sci. Eng. 11, 23–38 (2013). https://doi.org/10.1016/j.jngse.2012.11.002

    Article  Google Scholar 

  23. Chen, L.; Xu, Q.; Gossage, J.L.; Lou, H.H.: Simulation and economic evaluation of a coupled thermal vapor compression desalination process for produced water management. J. Nat. Gas Sci. Eng. 36, 442–453 (2016). https://doi.org/10.1016/j.jngse.2016.10.057

    Article  Google Scholar 

  24. Saidi, M.: Application of catalytic membrane reactor for pure hydrogen production by flare gas recovery as a novel approach. Int. J. Hydrogen Energy 43(31), 14834–14847 (2018). https://doi.org/10.1016/j.ijhydene.2018.05.156

    Article  Google Scholar 

  25. Khanipour, M.; Mirvakili, A.; Bakhtyari, A.; Farniaei, M.; Rahimpour, M.R.: A membrane-assisted hydrogen and carbon oxides separation from flare gas and recovery to a commercial methanol reactor. Int. J. Hydrogen Energy 45(12), 7386–7400 (2020). https://doi.org/10.1016/j.ijhydene.2019.04.149

    Article  Google Scholar 

  26. Group, W.B.: Global Gas Flaring Reduction Partnership (GGFR). In. (2015)

  27. Standards, T.I.P.: ENGINEERING STANDARD FOR PROCESS DESIGN OF GAS TREATING UNITS PART 1—PROCESS DESIGN OF GAS SWEETENING UNITS. In: The Iranian Petroleum Standards, Iran, (2013)

  28. Hall, K.R.: A new gas to liquids (GTL) or gas to ethylene (GTE) technology. Catal. Today 106(1), 243–246 (2005). https://doi.org/10.1016/j.cattod.2005.07.176

    Article  Google Scholar 

  29. Dautzenberg, F.M.; Mukherjee, M.: Process intensification using multifunctional reactors. Chem. Eng. Sci. 56(2), 251–267 (2001). https://doi.org/10.1016/S0009-2509(00)00228-1

    Article  Google Scholar 

  30. Gabriel, K.J.; Noureldin, M.; El-Halwagi, M.M.; Linke, P.; Jiménez-Gutiérrez, A.; Martínez, D.Y.: Gas-to-liquid (GTL) technology: targets for process design and water-energy nexus. Curr. Opin. Chem. Eng. 5, 49–54 (2014). https://doi.org/10.1016/j.coche.2014.05.001

    Article  Google Scholar 

  31. Martínez, D.Y.; Jiménez-Gutiérrez, A.; Linke, P.; Gabriel, K.J.; Noureldin, M.M.B.; El-Halwagi, M.M.: Water and energy issues in gas-to-liquid processes: assessment and integration of different gas-reforming alternatives. ACS Sustain. Chem. Eng. 2(2), 216–225 (2014). https://doi.org/10.1021/sc4002643

    Article  Google Scholar 

  32. Gabriel, K.J.; Linke, P.; Jiménez-Gutiérrez, A.; Martínez, D.Y.; Noureldin, M.; El-Halwagi, M.M.: Targeting of the water-energy nexus in gas-to-liquid processes: a comparison of syngas technologies. Ind. Eng. Chem. Res. 53(17), 7087–7102 (2014). https://doi.org/10.1021/ie4042998

    Article  Google Scholar 

  33. Rajabi, M.; Mehrpooya, M.; Haibo, Z.; Huang, Z.: Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: a critical review. Appl. Energy 253, 113544 (2019). https://doi.org/10.1016/j.apenergy.2019.113544

    Article  Google Scholar 

  34. Dincer, I.; Zamfirescu, C.: Chapter 5—conventional power generating systems. In: Dincer, I.; Zamfirescu, C. (Eds.) Advanced Power Generation Systems, pp. 199–310. Elsevier, Boston (2014)

    Chapter  Google Scholar 

  35. Jafarian, H.; Sattari, S.; Lajevardi, H.: Technical and economical investigation of electricity generation from associated gas. IEIJQP 4(1), 33–47 (2015)

    Google Scholar 

  36. Ibrahim, T.K.; Mohammed, M.K.; Awad, O.I.; Abdalla, A.N.; Basrawi, F.; Mohammed, M.N.; Najafi, G.; Mamat, R.: A comprehensive review on the exergy analysis of combined cycle power plants. Renew. Sustain. Energy Rev. 90, 835–850 (2018). https://doi.org/10.1016/j.rser.2018.03.072

    Article  Google Scholar 

  37. Baukal, C.: The John Zink Combustion Handbook. CRC Press, Boca Raton, FL (2001)

    Book  Google Scholar 

  38. Brennan, P.W.F.A.D.: Minimize flaring with flare gas recovery. 81(5), 83–85 (2002).

  39. Allen G.D.W.R.E.; Chan, H.: Flare gas recovery in shell Canada refineries. The Fifth Industrial Energy Technology Conference Houston.

  40. Mokhatab, S.; Poe, W.A.; Mak, J.Y.: Handbook of Natural Gas Transmission and Processing: Principles and Practices: Third Edition. Handbook of Natural Gas Transmission and Processing: Principles and Practices: Third Edition, (2015)

  41. Mitra, S.: A Technical report on gas sweetening by amines chemical engineering and technology 2 (2011).

  42. Linnhoff, B.; Hindmarsh, E.: The pinch design method for heat exchanger networks. Chem. Eng. Sci. 38(5), 745–763 (1983). https://doi.org/10.1016/0009-2509(83)80185-7

    Article  Google Scholar 

  43. Behroozsarand, A.; Zamaniyan, A.: Simulation and optimization of an integrated GTL process. J. Clean. Prod. 142(Part 4), 2315–2327 (2017). https://doi.org/10.1016/j.jclepro.2016.11.045

    Article  Google Scholar 

  44. Kuipers, E.W.; Scheper, C.; Wilson, J.H.; Vinkenburg, I.H.; Oosterbeek, H.: Non-ASF product distributions due to secondary reactions during Fischer-Tropsch synthesis. J. Catal. 158(1), 288–300 (1996). https://doi.org/10.1006/jcat.1996.0028

    Article  Google Scholar 

  45. Van Der Laan, G.P.; Beenackers, A.A.C.M.: Kinetics and selectivity of the Fischer-Tropsch synthesis: a literature review. Catal. Rev. Sci. Eng. 41(3–4), 255–318 (1999)

    Article  Google Scholar 

  46. Venter, J.A.: Modeling and Exergy Analysis of Natural Gas to Hydrocarbon Liquids (GTL) Process. The built environment and information technology, University of Pretoria, Faculty of engineering (2002)

    Google Scholar 

  47. Waste Heat Recovery: Technology and Opportunities in U.S. Industry. U.S. Department of energy U.S.A (2008)

  48. Grosu, L.; Marin, A.; Dobrovicescu, A.; Queiros-Conde, D.: Exergy analysis of a solar combined cycle: organic Rankine cycle and absorption cooling system. Int. J. Energy Environ. Eng. 7(4), 449–459 (2016). https://doi.org/10.1007/s40095-015-0168-y

    Article  Google Scholar 

  49. Tirandazi, B.; Mehrpooya, M.; Vatani, A.; Moosavian, S.M.A.: Exergy analysis of C2+ recovery plants refrigeration cycles. Chem. Eng. Res. Des. 89(6), 676–689 (2011). https://doi.org/10.1016/j.cherd.2010.10.006

    Article  Google Scholar 

  50. Adrian Bejan, G.T.T.S.N.I.; Michael, M.: Thermal Design and Optimization. Wiley (1996)

    MATH  Google Scholar 

  51. Michael J.M.H.N.S.; Daisie D.B.; Margaret B.B: Fundamentals of Engineering Thermodynamics. Wiley (2003)

  52. Dedication A2 - Kotas, T.J. In: The Exergy Method of Thermal Plant Analysis. p. ii. Butterworth-Heinemann, (1985)

  53. Truls G.E.: Exergy analysis of conventional and electrified oil and gas platforms. In: (2014)

  54. Dincer, I.; Rosen, M.A.: Exergy 2ed. Elsevier, Oxford, UK (2013)

    Google Scholar 

  55. EM, S.: Advances in thermal design of heat exchangers. Wiley (2005)

  56. Wu, C.; Wang, S.-S.; Feng, X.-J.; Li, J.: Energy, exergy and exergoeconomic analyses of a combined supercritical CO2 recompression Brayton/absorption refrigeration cycle. Energy Convers. Manag. 148, 360–377 (2017). https://doi.org/10.1016/j.enconman.2017.05.042

    Article  Google Scholar 

  57. Ansarinasab, H.; Mehrpooya, M.; Mohammadi, A.: Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system. J. Clean. Prod. 144, 248–259 (2017). https://doi.org/10.1016/j.jclepro.2017.01.014

    Article  Google Scholar 

  58. Panjeshahi, M.H.; Harati, F.; Nouzari, M.: Improving energy efficiency in natural gas refineries using exergy analysis. Chem. Eng. Trans. 21, 121–126 (2010)

    Google Scholar 

  59. Ashrafizadeh, S.A.; Amidpour, M.; Abolmashadi, M.: Exergy analysis of distillation column using concept of driving forces. J. Chem. Eng. Jpn. 46(7), 434–443 (2013). https://doi.org/10.1252/jcej.11we038

    Article  Google Scholar 

  60. Lazzaretto, A.; Tsatsaronis, G.: SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy 31(8–9), 1257–1289 (2006)

    Article  Google Scholar 

  61. Ahmadi, P.I.D.M.A.: Rosen: multi-objective optimization of novel solar-based multi generation energy system. Sol. Energy 108, 576–591 (2014)

    Article  Google Scholar 

  62. Baghernejad, A.; Yaghoubi, M.: Exergoeconomic analysis and optimization of an integrated solar combined cycle system (ISCCS) using genetic algorithm. Energy Convers. Manag. 52(5), 2193–2203 (2011). https://doi.org/10.1016/j.enconman.2010.12.019

    Article  Google Scholar 

  63. Baghernejad, A.; Yaghoubi, M.: Multi-objective exergoeconomic optimization of an integrated solar combined cycle system using evolutionary algorithms. Int. J. Energy Res. 35(7), 601–615 (2011). https://doi.org/10.1002/er.1715

    Article  Google Scholar 

  64. Ghaebi, H.; Amidpour, M.; Karimkashi, S.; Rezayan, O.: Energy, exergy and thermoeconomic analysis of a combined cooling, heating and power (CCHP) system with gas turbine prime mover. Int. J. Energy Res. 35(8), 697–709 (2011). https://doi.org/10.1002/er.1721

    Article  Google Scholar 

  65. Boyaghchi, F.A.; Mahmoodnezhad, M.; Sabeti, V.: Exergoeconomic analysis and optimization of a solar driven dual-evaporator vapor compression-absorption cascade refrigeration system using water/CuO nanofluid. J. Clean. Prod. 139, 970–985 (2016). https://doi.org/10.1016/j.jclepro.2016.08.125

    Article  Google Scholar 

  66. Shokati, N.; Ranjbar, F.; Yari, M.: A comparative analysis of Rankine and absorption power cycles from exergoeconomic viewpoint. Energy Convers. Manag. 88, 657–668 (2014). https://doi.org/10.1016/j.enconman.2014.09.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahshid Zaresharif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaresharif, M., Vatani, A. & Ghasemian, M. Evaluation of Different Flare Gas Recovery Alternatives with Exergy and Exergoeconomic Analyses. Arab J Sci Eng 47, 5501–5520 (2022). https://doi.org/10.1007/s13369-021-05485-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05485-y

Keywords

Navigation