Skip to main content
Log in

A Simultaneous Moth Flame Optimizer Feature Selection Approach Based on Levy Flight and Selection Operators for Medical Diagnosis

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript


This paper proposes an effective wrapper approach by integrating the Levy flight and evolutionary selection operators into the Moth Flame Optimization (MFO) algorithm. The main purpose is to solve the Feature Selection (FS) problem in medical applications. FS is used as a preprocessing step in a data mining process to improve the performance of the classification system by eliminating irrelevant and redundant features from a dataset. This simplifies the generalization process and reduces the complexity of the generating models. Furthermore, it speeds up the learning process and reduces the cost for additional hardware resources. However, FS is a challenging NP-hard problem because the search space grows exponentially with an increase in the number of features. In this paper, the swarming behavior of the moths is utilized by using the MFO optimizer as a search strategy within a wrapper approach. The Levy flight operator is proposed to enhance the exploratory behavior of the MFO and mitigate the stagnation in local minima. Different selection mechanisms: random selection (RS), tournament selection (TS), and roulette wheel selection (RWS) methods, are investigated to decrease the bias of the MFO algorithm toward exploitation. These selection operators are proposed in the combination of the Levy flight in the form of four different FS methods LBMFO-R1, LBMFO-R2, LBMFO-TS, and LBMFO-RWS. The proposed methods are validated using 23 medical data sets from well-regarded data repositories. The comprehensive results and various comparisons reveal that the Levy flight and selection operators have a great positive impact on the performance of the MFO. They enhance the exploration, convergence trends, and diversity of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others


  1. Aljarah, I.; Ala’M, A.-Z.; Faris, H.; Hassonah, M.A.; Mirjalili, S.; Saadeh, H.: Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cognit. Comput. 10, 478–495, 2018

    Article  Google Scholar 

  2. Khurma, R. A.; Aljarah, I.; Sharieh, A.; Mirjalili, S.: Evolopy-FS: an open-source nature-inspired optimization framework in python for feature selection. In: Evolutionary Machine Learning Techniques. Springer, pp. 131–173 (2020)

  3. Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H.; Zhang, Y.; Mirjalili, S.: Asynchronous accelerating multi-leader salp chains for feature selection. Appl. Soft Comput. 71, 964–979, 2018

    Article  Google Scholar 

  4. Al-Madi, N.; Faris, H.; Abukhurma, R.: Cost-sensitive genetic programming for churn prediction and identification of the influencing factors in telecommunication market. Int. J. Adv. Sci. Technol. 13–28 (2018)

  5. Faris, H.; Abukhurma, R.; Almanaseer, W.; Saadeh, M.; Mora, A.M.; Castillo, P.A.; Aljarah, I.: Improving financial bankruptcy prediction in a highly imbalanced class distribution using oversampling and ensemble learning: a case from the Spanish market. Prog. Artif. Intell. 1–23 (2019)

  6. Tubishat, M.; Abushariah, M.A.; Idris, N.; Aljarah, I.: Improved whale optimization algorithm for feature selection in Arabic sentiment analysis. Appl. Intell. 49, 1688–1707, 2018

    Article  Google Scholar 

  7. Mistry, K.; Zhang, L.; Neoh, S.C.; Lim, C.P.; Fielding, B.: A micro-GA embedded PSO feature selection approach to intelligent facial emotion recognition. IEEE Trans. Cybern. 47, 1496–1509, 2016

    Article  Google Scholar 

  8. Khurma, R. A.; Aljarah, I.; Sharieh, A.: An efficient moth flame optimization algorithm using chaotic maps for feature selection in the medical applications, In: Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods—Volume 1: ICPRAM, INSTICC, SciTePress, pp. 175–182 (2020)

  9. Abu Kurma, R.; Aljarah, I.; Sharieh, A.; Mirjalili, S.: Evolopy-fs: An open-source nature-inspired optimization framework in python for feature selection. In: Evolutionary Machine Learning Techniques, pp. 87–105 (2020)

  10. Sihwail, R.; Omar, K.; Ariffin, K.A.Z.; Tubishat, M.: Improved Harris hawks optimization using elite opposition-based learning and novel search mechanism for feature selection. IEEE Access 8, 121127–121145, 2020

    Article  Google Scholar 

  11. Mafarja, M.; Aljarah, I.; Faris, H.; Hammouri, A.I.; Ala’M, A.-Z.; Mirjalili, S.: Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst. Appl. 117, 267–286, 2019

    Article  Google Scholar 

  12. Zhang, L.; Mistry, K.; Neoh, S.C.; Lim, C.P.: Intelligent facial emotion recognition using moth-firefly optimization. Knowl. Based Syst. 111, 248–267, 2016

    Article  Google Scholar 

  13. Zawbaa, H.M.; Emary, E.; Grosan, C.; Snasel, V.: Large-dimensionality small-instance set feature selection: a hybrid bio-inspired heuristic approach. Swarm Evolut. Comput. 42, 29–42, 2018

    Article  Google Scholar 

  14. Al-Tashi, Q.; Abdulkadir, S.J.; Rais, H.M.; Mirjalili, S.; Alhussian, H.: Approaches to multi-objective feature selection: a systematic literature review. IEEE Access 8, 125076–125096, 2020

    Article  Google Scholar 

  15. Hans, R.; Kaur, H.: Quasi-opposition-based multi-verse optimization algorithm for feature selection. In: Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S). Springer, pp. 345–359 (2019)

  16. Mafarja, M.; Jarrar, R.; Ahmad, S.; Abusnaina, A.A.: Feature selection using binary particle swarm optimization with time varying inertia weight strategies. In: Proceedings of the 2nd International Conference on Future Networks and Distributed Systems, ACM, p. 18

  17. Ghamisi, P.; Couceiro, M.S.; Benediktsson, J.A.: A novel feature selection approach based on FODPSO and SVM. IEEE Trans. Geosci. Remote Sens. 53, 2935–2947, 2015

    Article  Google Scholar 

  18. Babaoglu, İ; Findik, O.; Ülker, E.: A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine. Expert Syst. Appl. 37, 3177–3183, 2010

    Article  Google Scholar 

  19. Martinez, E.; Alvarez, M.M.; Trevino, V.: Compact cancer biomarkers discovery using a swarm intelligence feature selection algorithm. Comput. Biol. Chem. 34, 244–250, 2010

    Article  Google Scholar 

  20. Mohamad, M.S.; Omatu, S.; Deris, S.; Yoshioka, M.: A modified binary particle swarm optimization for selecting the small subset of informative genes from gene expression data. IEEE Trans. Inf. Technol. Biomed. 15, 813–822, 2011

    Article  Google Scholar 

  21. Vieira, S.M.; Mendonça, L.F.; Farinha, G.J.; Sousa, J.M.: Modified binary PSO for feature selection using SVM applied to mortality prediction of septic patients. Appl. Soft Comput. 13, 3494–3504, 2013

    Article  Google Scholar 

  22. Inbarani, H.H.; Azar, A.T.; Jothi, G.: Supervised hybrid feature selection based on PSO and rough sets for medical diagnosis. Comput. Methods Programs Biomed. 113, 175–185, 2014

    Article  Google Scholar 

  23. Banka, H.; Dara, S.: A hamming distance based binary particle swarm optimization (HDBPSO) algorithm for high dimensional feature selection, classification and validation. Pattern Recognit. Lett. 52, 94–100, 2015

    Article  Google Scholar 

  24. Ahmad, F.; Isa, N.A.M.; Hussain, Z.; Osman, M.K.; Sulaiman, S.N.: A GA-based feature selection and parameter optimization of an ANN in diagnosing breast cancer. Pattern Anal. Appl. 18, 861–870, 2015

    Article  MathSciNet  Google Scholar 

  25. Sheikhpour, R.; Sarram, M.A.; Sheikhpour, R.: Particle swarm optimization for bandwidth determination and feature selection of kernel density estimation based classifiers in diagnosis of breast cancer. Appl. Soft Comput. 40, 113–131, 2016

    Article  MATH  Google Scholar 

  26. Gunasundari, S.; Janakiraman, S.; Meenambal, S.: Velocity bounded Boolean particle swarm optimization for improved feature selection in liver and kidney disease diagnosis. Expert Syst. Appl. 56, 28–47, 2016

    Article  Google Scholar 

  27. Li, Q.; Chen, H.; Huang, H.; Zhao, X.; Cai, Z.; Tong, C.; Liu, W.; Tian, X.: An enhanced grey wolf optimization based feature selection wrapped kernel extreme learning machine for medical diagnosis. Comput. Math. Methods Med. 2017 (2017)

  28. Noori, F.M.; Qureshi, N.K.; Khan, R.A; Naseer, N.: Feature selection based on modified genetic algorithm for optimization of functional near-infrared spectroscopy (FNIRS) signals for BCI. In: 2016 2nd International Conference on Robotics and Artificial Intelligence (ICRAI). IEEE, pp. 50–53 (2016)

  29. Mirjalili, S.: Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249, 2015

    Article  Google Scholar 

  30. Sayed, G.I.; Hassanien, A.E.; Nassef, T.M.; Pan, J.-S.: Alzheimer’s disease diagnosis based on moth flame optimization. In: International Conference on Genetic and Evolutionary Computing. Springer, pp. 298–305

  31. Sayed, G.I.; Hassanien, A.E.: Moth-flame swarm optimization with neutrosophic sets for automatic mitosis detection in breast cancer histology images. Appl. Intell. 47, 397–408, 2017

    Article  Google Scholar 

  32. Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C.: Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing 267, 69–84, 2017

    Article  Google Scholar 

  33. Hassanien, A.E.; Gaber, T.; Mokhtar, U.; Hefny, H.: An improved moth flame optimization algorithm based on rough sets for tomato diseases detection. Comput. Electron. Agric. 136, 86–96, 2017

    Article  Google Scholar 

  34. Sayed, G.I.; Hassanien, A.E.: A hybrid SA-MFO algorithm for function optimization and engineering design problems. Complex Intell. Syst. 4, 195–212, 2018

    Article  Google Scholar 

  35. Khurma, R. A., Aljarah, I., Sharieh, A.: Rank based moth flame optimisation for feature selection in the medical application. In: 2020 IEEE Congress on Evolutionary Computation (CEC), IEEE, pp. 1–8 (2020)

  36. Wolpert, D.H.; Macready, W.G.; et al.: No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1, 67–82, 1997

    Article  Google Scholar 

  37. El Aziz, M.A.; Hassanien, A.E.: Modified cuckoo search algorithm with rough sets for feature selection. Neural Comput. Appl. 29, 925–934, 2018

    Article  Google Scholar 

  38. Ewees, A.A.; Sahlol, A.T.; Amasha, M.A.: A bio-inspired moth-flame optimization algorithm for arabic handwritten letter recognition. In: 2017 International Conference on Control, Artificial Intelligence, Robotics and Optimization (ICCAIRO). IEEE, pp. 154–159 (2017)

  39. Zhao, H.; Zhao, H.; Guo, S.: Using gm (1, 1) optimized by MFO with rolling mechanism to forecast the electricity consumption of inner Mongolia. Appl. Sci. 6, 20, 2016

    Article  Google Scholar 

  40. Reddy, M.P.K.; Babu, M.R.: A hybrid cluster head selection model for internet of things. Cluster Comput. 22, 13095–13107, 2017

    Google Scholar 

  41. Mirjalili, S.; Lewis, A.: S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evolut. Comput. 9, 1–14, 2013

    Article  Google Scholar 

  42. Kennedy, J., Eberhart, R.C.: A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational cybernetics and simulation, volume 5. IEEE, pp. 4104–4108

  43. Li, Z.; Zhou, Y.; Zhang, S.; Song, J.: Lévy-flight moth-flame algorithm for function optimization and engineering design problems. Math. Probl. Eng. 2016 (2016)

  44. Talbi, E.-G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  45. Mafarja, M.; Aljarah, I.; Heidari, A.A.; Hammouri, A.I.; Faris, H.; Ala’M, A.-Z.; Mirjalili, S.: Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowl. Based Syst. 145, 25–45, 2018

    Article  Google Scholar 

  46. Al-Betar, M.A.; Awadallah, M.A.; Khader, A.T.; Bolaji, A.L.: Tournament-based harmony search algorithm for non-convex economic load dispatch problem. Appl. Soft Comput. 47, 449–459, 2016

    Article  Google Scholar 

  47. Al-Betar, M.A.; Awadallah, M.A.; Faris, H.; Yang, X.-S.; Khader, A.T.; Alomari, O.A.: Bat-inspired algorithms with natural selection mechanisms for global optimization. Neurocomputing 273, 448–465, 2018a

    Article  Google Scholar 

  48. Al-Betar, M.A.; Awadallah, M.A.; Faris, H.; Aljarah, I.; Hammouri, A.I.: Natural selection methods for grey wolf optimizer. Expert Syst. Appl. 113, 481–498, 2018b

    Article  Google Scholar 

  49. Awadallah, M.A.; Al-Betar, M.A.; Bolaji, A.L.; Alsukhni, E.M.; Al-Zoubi, H.: Natural selection methods for artificial bee colony with new versions of onlooker bee. Soft Comput. 23, 6455–6494, 2019

    Article  Google Scholar 

  50. Ghatasheh, N.; Faris, H.; Abukhurma, R.; Castillo, P.A.; Al-Madi, N.; Mora, A.M.; Ala’M, A.-Z.; Hassanat, A.: Cost-sensitive ensemble methods for bankruptcy prediction in a highly imbalanced data distribution: a real case from the Spanish market. Prog. Artif. Intell. 9, 361–375, 2020

    Article  Google Scholar 

  51. Xue, B.; Zhang, M.; Browne, W.N.: Novel initialisation and updating mechanisms in PSO for feature selection in classification. In: European Conference on the Applications of Evolutionary Computation. Springer, pp. 428–438

  52. Kashef, S.; Nezamabadi-pour, H.: An advanced ACO algorithm for feature subset selection. Neurocomputing 147, 271–279, 2015

    Article  Google Scholar 

  53. Mafarja, M.; Sabar, N.R.: Rank based binary particle swarm optimisation for feature selection in classification. In: Proceedings of the 2nd International Conference on Future Networks and Distributed Systems. ACM, p. 19

  54. Emary, E.; Zawbaa, H.M.; Hassanien, A.E.: Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 371–381, 2016

    Article  Google Scholar 

  55. Chen, L.-F.; Su, C.-T.; Chen, K.-H.; Wang, P.-C.: Particle swarm optimization for feature selection with application in obstructive sleep apnea diagnosis. Neural Comput. Appl. 21, 2087–2096, 2012

    Article  Google Scholar 

  56. Moradi, P.; Gholampour, M.: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy. Appl. Soft Comput. 43, 117–130, 2016

    Article  Google Scholar 

  57. Liu, Y.; Wang, G.; Chen, H.; Dong, H.; Zhu, X.; Wang, S.: An improved particle swarm optimization for feature selection. J. Bionic Eng. 8, 191–200, 2011

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ibrahim Aljarah.

Appendix A. Description of the Datasets

Appendix A. Description of the Datasets

See Tables 11 and 12.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurma, R.A., Aljarah, I. & Sharieh, A. A Simultaneous Moth Flame Optimizer Feature Selection Approach Based on Levy Flight and Selection Operators for Medical Diagnosis. Arab J Sci Eng 46, 8415–8440 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: