Skip to main content

Advertisement

Log in

Effect of post-reaction ultrasonic treatment on synthesis, microstructural evolution and mechanical behaviour of Al 4043/TiB2 in situ nanocomposites

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Al 4043 is commonly used as a filler material for welding of aluminium-based components. In the present research work, Al 4043/xTiB2 (titanium diboride) microcomposites (x = 2, 4, 6, 8 and 10 wt%) are fabricated by dilution of Al 4043/10TiB2 in situ master composites synthesized by salt-melt reaction. To synthesize the nanocomposites, in situ Al 4043/10TiB2 composites are re-melted, diluted and ultrasonic-treated for 5 min. The microstructural analysis revealed that ultrasonic treatment (UT) is beneficial on improving the dispersion and refinement of TiB2 particles. UT of Al 4043/2TiB2 composites reduced the size of TiB2 particles from ~ 1270 to ~ 25 nm. At the same time, the efficiency of UT on agglomerate breakage and particle size reduction decreases with the increase in amount of reinforcement. The hindrance generated by increased amount of reinforcements to ultrasonic wave propagation and allied impairment on cavitation implosion is proposed as the reason for the reduction in efficiency of UT. The mechanical property analysis revealed that UT-assisted size reduction and agglomerate breakage of TiB2 particles significantly increase both hardness and compressive strength of in situ composites. The results revealed that the compressive strength of TiB2-reinforced Al 4043/10TiB2 micro- and nanocomposite increased up to ~ 90 and ~ 150 MPa, respectively. Also, a significant improvement in hardness was observed in the reinforced Al 4043/10TiB2 micro- and nanocomposites by ~ 94% and ~ 98%, respectively, compared to the monolithic alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pramod, S.L.; Bakshi, S.R.; Murty, B.S.: Aluminum-based cast in-situ. Compos. Rev. (2014). https://doi.org/10.1007/s11665-015-1424-2

    Article  Google Scholar 

  2. Njuguna, J.; Silva, F.; Sachse, S.: Nanocomposites for vehicle structural applications. Nanofibers Prod. Prop. Funct. Appl. (2011). https://doi.org/10.5772/916

    Article  Google Scholar 

  3. Ravi, K.R.; Nampoothiri, J.; Raj, B.: Nanocomposites: a gaze through their applications in transport industry. In: Nanotechnology for energy sustainability, pp. 831–856. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2017). https://doi.org/10.1002/9783527696109.ch34

  4. Haque, S.; Ansari, A.H.; Bharti, P.K.: Experimental evaluation of process parameters effect on mechanical and machining properties of Al6061–Cu–SiCp-reinforced metal matrix composite. Arab. J. Sci. Eng. 41, 4303–4311 (2016). https://doi.org/10.1007/s13369-016-2094-6

    Article  Google Scholar 

  5. Civalek, O.: Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Comp. Part B: Eng. 111, 45–59 (2017)

    Article  Google Scholar 

  6. Akgoz, B.; Civalek, O.: Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams. Comp. Part B Eng. 129, 77–87 (2017)

    Article  Google Scholar 

  7. Jalaei, M.; Civalek, O.: On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int. J. Eng. Sci. 143, 14–32 (2019)

    Article  MathSciNet  Google Scholar 

  8. Civalek, O.; Uzun, B.; Yaylı, M.O.; Akgöz, B.: Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus 135, 381 (2020). https://doi.org/10.1140/epjp/s13360-020-00385-w

    Article  Google Scholar 

  9. Ebrahimi, F.; Barati, M.R.; Civalek, O.: Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36, 953–964 (2020)

    Article  Google Scholar 

  10. Lakshmi, S.; Lu, L.; Gupta, M.: in-situ preparation of TiB2 reinforced Al based composites. J. Mater. Process. Technol. 73, 160–166 (1998)

    Article  Google Scholar 

  11. Feng, C.F.; Froyen, L.: Microstructures of in-situ Al/TiB2 MMCs prepared by a casting route. J. Mater. Sci. 35, 837–850 (2000). https://doi.org/10.1023/A:1004729920354

    Article  Google Scholar 

  12. Chakraborty, M.; Mandal, A.; Kumar, G.S.V.; Ravi, K.R.; Siddhalingeshwar, I.G.: Recent developments in aluminium alloy reinforced Titanium diboride in-situ composites. Indian Foundry J 58, 29–34 (2012)

    Google Scholar 

  13. Fan, Z.: An epitaxial model for heterogeneous nucleation on potent substrates. Mettall. Mater. Trans. (2013). https://doi.org/10.1007/s11661-012-1495-8

    Article  Google Scholar 

  14. Li, J.; Zhao, G.; Wu, S.; Huang, Z.; Lü, S.; Chen, Q.; Li, F.: A Preparation of hybrid particulates SiCnp and Mg2Si reinforced Al-Cu matrix composites. Mater. Sci. Eng. 751, 107–114 (2019). https://doi.org/10.1016/j.msea.2019.02.076

    Article  Google Scholar 

  15. Nampoothiri, J.; Harini, R.S.; Nayak, S.K.; Raj, B.; Ravi, K.R.: Post in-situ reaction ultrasonic treatment for generation of Al-4.4Cu/TiB2 nanocomposite: a route to enhance the strength of metal matrix nanocomposites. J. Alloys Compd. 683, 370–378 (2016)

    Article  Google Scholar 

  16. Mandal, A.; Chakraborty, M.; Murty, B.S.: Ageing behaviour of A356 alloy reinforced with in-situ formed TiB2 particles. Mater. Sci. Eng. A 489, 220–226 (2008). https://doi.org/10.1016/j.msea.2008.01.042

    Article  Google Scholar 

  17. Casati, R.; Vedani, M.: Metal matrix composites reinforced by nano-particles—a review. Metals (2014). https://doi.org/10.3390/met4010065

    Article  Google Scholar 

  18. Borgonovo, C.; Apelian, D.: Manufacture of Aluminum nanocomposites : a critical review. Mater. Sci. Forum. 678, 1–22 (2011). https://doi.org/10.4028/www.scientific.net/MSF.678.1

  19. Li, X.; Yang, Y.; Cheng, X.: Ultrasonic-assisted fabrication of metal matrix nanocomposites. J. Mater. Sci. 39, 3211–3212 (2004). https://doi.org/10.1023/b:jmsc.0000025862.23609.6f

    Article  Google Scholar 

  20. Amouri, K.; Kazemi, S.; Momeni, A.; Kazazi, M.: Dry sliding wear characteristics of SiC and Al2O3 nanoparticulate Aluminium matrix composite using Taguchi technique. Mater. Sci. Eng. A. 674, 569–578 (2016). https://doi.org/10.1016/j.msea.2016.08.027

    Article  Google Scholar 

  21. Ekka, K.K.; Chauhan, S.R.: Varun: dry sliding wear characteristics of SiC and Al2O3 nanoparticulate aluminium matrix composite using Taguchi technique. Arab. J. Sci. Eng. 40, 571–581 (2015). https://doi.org/10.1007/s13369-014-1528-2

    Article  Google Scholar 

  22. Zhao, Y.; Zhang, S.; Chen, G.; Cheng, X.; Wang, C.: In-situ (Al2O3 + Al3Zr)np/Al nanocomposites synthesized by magneto-chemical melt reaction. Compos. Sci. Technol. 68, 1463–1470 (2008). https://doi.org/10.1016/j.compscitech.2007.10.036

    Article  Google Scholar 

  23. Nampoothiri, J.; Raj, B.; Ravi, K.R.: Effect of ultrasonic treatment on microstructure and mechanical property of in-situ Al/2TiB2 particulate composites. Mater. Sci. Forum 830–831, 463–466 (2015). https://doi.org/10.4028/www.scientific.net/MSF.830-831.463

    Article  Google Scholar 

  24. Liu, J.; Liu, Z.; Dong, Z.; Cheng, X.; Zheng, Q.; Li, J.; Zuo, S.; Huang, Z.; Gao, Y.; Xing, J.; Han, Q.: On the preparation and mechanical properties of in-situ small-sized TiB2/Al-4.5Cu composites via ultrasound assisted RD method. J. Alloys Compd. 765, 1008–1017 (2018). https://doi.org/10.1016/j.jallcom.2018.06.303

    Article  Google Scholar 

  25. Meti, V.K.V.; Shirur, S.; Nampoothiri, J.; Ravi, K.R.; Siddhalingeshwar, I.G.: Synthesis, characterization and mechanical properties of AA7075 Based MMCs reinforced with TiB2 particles processed through ultrasound assisted in-situ casting technique. Trans Indian Inst Met 71, 841–848 (2018). https://doi.org/10.1007/s12666-017-1216-5

    Article  Google Scholar 

  26. Gao, Q.; Wu, S.; Lü, S.; Xiong, X.; Du, R.; An, P.: Improvement of particles distribution of in-situ 5 vol.% TiB2 particulates reinforced Al-4.5Cu alloy matrix composites with ultrasonic vibration treatment. J. Alloys Compd. 692, 1–9 (2017). https://doi.org/10.1016/j.jallcom.2016.09.013

    Article  Google Scholar 

  27. Ahmadi, E.; Ranjkesh, M.; Mansoori, E.; Fattahi, M.; Yousefi Mojallal, R.; Amirkhanlou, S.: Microstructure and mechanical properties of Al/ZrC/TiC hybrid nanocomposite filler metals of tungsten inert gas welding fabricated by accumulative roll bonding. J. Manuf. Proc. 26, 173–177 (2017)

    Article  Google Scholar 

  28. Fattahi, M.; Ghaheri, A.; Arabian, N.; Amirkhanlu, F.; Moayedi, H.: Applying the ultrasonic vibration during TIG welding as a promising approach for the development of nanoparticle dispersion strengthened Aluminium weldments. J. Mater. Process. Technol. 282, 116672 (2020)

    Article  Google Scholar 

  29. Moreira, R.C.S.; Kovalenko, O.; Souza, D.; Reis, R.P.: Metal matrix composite material reinforced with metal wire and produced with gas metal arc welding. J. Comp. Mater. 53(28–30), 4411–4426 (2019)

    Article  Google Scholar 

  30. Muñoz, A.C.; Rückert, G.; Huneau, B.; Sauvage, X.; Marya, S.: Comparison of TIG welded and friction stir welded Al-4.5Mg-0.26Sc alloy. J. Mater. Process. Technol. 197, 337–343 (2008). https://doi.org/10.1016/j.jmatprotec.2007.06.035

    Article  Google Scholar 

  31. Nampoothiri, J.; Raj, B.; Ravi, K.R.: Effect of ultrasonic treatment on microstructure and mechanical property of in-situ Al/2TiB particulate composites. Mater. Sci. Forum. 830–831, 463–466 (2015). shttps://doi.org/10.4028/www.scientific.net/MSF.830-831.463

  32. Bhogi, S.; Nampoothiri, J.; Ravi, K.R.; Mukherjee, M.: Influence of nano and micro particles on the expansion and mechanical properties of aluminum foams. Mater. Sci. Eng. A. 685, 131–138 (2017). https://doi.org/10.1016/j.msea.2016.12.127

    Article  Google Scholar 

  33. Greer, A.L.; Cooper, P.S.; Meredith, M.W.; Schneider, W.; Schumacher, P.; Spittle, J.A.; Tronche, A.: Grain refinement of aluminium alloys by inoculation. Adv. Eng. Mater. 5, 81–91 (2003). https://doi.org/10.1002/adem.200390013

    Article  Google Scholar 

  34. Harini, R.S.; Nampoothiri, J.; Nagasivamuni, B.; Raj, B.; Ravi, K.R.: Ultrasonic assisted grain re fi nement of Al–Mg alloy using in-situ MgAl2O4 particles. Mater. Lett. 145, 328–331 (2015). https://doi.org/10.1016/j.matlet.2015.01.132

    Article  Google Scholar 

  35. Nampoothiri, J.; Raj, B.; Ravi, K.R.: Role of ultrasonic treatment on microstructural evolution in A356/TiB2 in-situ composite. Trans. Indian Inst. Met. (2015). https://doi.org/10.1007/s12666-015-0653-2

    Article  Google Scholar 

  36. Trans, P.; Lond, R.S.: Grain refinement of alloys by inoculation of melts inoculation of melts. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 361, 479–495 (2003). https://doi.org/10.1098/rsta.2002.1147

    Article  Google Scholar 

  37. Xu, H.; Zeiger, B.W.; Suslick, K.S.: Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 42, 2555–2567 (2013). https://doi.org/10.1039/c2cs35282f

    Article  Google Scholar 

  38. Eskin, G.I.: Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys. Ultrason. Sonochem. 8, 319–325 (2001)

    Article  Google Scholar 

  39. Puga, H.; Barbosa, J.; Tuan, N.Q.; Silva, F.: Effect of ultrasonic degassing on performance of Al-based components. Trans. Nonferrous Met. Soc. China 24, 3459–3464 (2014). https://doi.org/10.1016/S1003-6326(14)63489-0

    Article  Google Scholar 

  40. Bang, J.H.; Suslick, K.S.: Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 22, 1039–1059 (2010). https://doi.org/10.1002/adma.200904093

    Article  Google Scholar 

  41. Didenko, Y.T.; Iii, W.B.M.; Suslick, K.S.: Hot spot conditions during cavitation in water. J. Am. Chem. Soc. 121, 5817–5818 (1999)

    Article  Google Scholar 

  42. Lin, P.; Zhang, Z.; Ren, L.: Optics & laser technology the mechanical properties and microstructures of AZ91D magnesium alloy processed by selective laser cladding with Al powder. Opt. Laser Technol. 60, 61–68 (2014). https://doi.org/10.1016/j.optlastec.2013.12.024

    Article  Google Scholar 

  43. Udhayabanu, V.; Ravi, K.R.; Murty, B.S.: Ultrafine-grained, high-strength NiAl with Al2O3 and Al4C3 nanosized particles dispersed via mechanical alloying in toluene with spark plasma sintering. Mater. Sci. Eng. A. 585, 379–386 (2013). https://doi.org/10.1016/j.msea.2013.07.024

    Article  Google Scholar 

  44. Wang, M.; Wu, Y.; Wang, H.; Wang, F.; Ma, N.; Chen, Z.; Chen, D.: Mechanical properties of in-situ TiB2/A356 composites. Mater. Sci. Eng. A. 590, 246–254 (2013). https://doi.org/10.1016/j.msea.2013.10.021

    Article  Google Scholar 

  45. Zhang, Z.; Wang, X.; Zhang, Q.; Liang, Y.; Ren, L.; Li, X.: Fabrication of Fe-based composite coatings reinforced by TiC particles and its microstructure and wear resistance of 40Cr gear steel by low energy pulsed laser cladding. Opt. Laser Technol. 119, 105622 (2019). https://doi.org/10.1016/j.optlastec.2019.105622

    Article  Google Scholar 

  46. Akbari, M.K.; Baharvandi, H.R.; Shirvanimoghaddam, K.: Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites. Mater. Des. 66, 150–161 (2015). https://doi.org/10.1016/j.matdes.2014.10.048

    Article  Google Scholar 

  47. Nampoothiri, R.R.J.; Kumar, T.S.: Microstructure and Mechanical Properties of Al/MgAl2O4 in-situ composites synthesized by ultrasonic cavitation. Trans. Indian Inst. Met. (2019). https://doi.org/10.1007/s12666-019-01564-9

    Article  Google Scholar 

  48. Li, J.; Li, F.; Wu, S.; Lü, S.; Guo, W.; Yang, X.: Variation of microstructure and mechanical properties of hybrid particulates reinforced Al-alloy matrix composites with ultrasonic treatment. J. Alloys Compd. 789, 630–638 (2019). https://doi.org/10.1016/j.jallcom.2019.03.074

    Article  Google Scholar 

Download references

Acknowledgements

Jayakrishnan Nampoothiri acknowledges the Council of Scientific and Industrial Research, New Delhi (Award No: 08/473(0006)/2015 EMR-1), and Directorate of Naval Research Board, Govt. of India (Grant No: DNRD/05/4003/NRB/292) for the funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Leo Dev Wins.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramani, S., Wins, K.L.D., Nampoothiri, J. et al. Effect of post-reaction ultrasonic treatment on synthesis, microstructural evolution and mechanical behaviour of Al 4043/TiB2 in situ nanocomposites. Arab J Sci Eng 46, 7521–7531 (2021). https://doi.org/10.1007/s13369-021-05468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05468-z

Keywords

Navigation