Skip to main content
Log in

Experimental Study of Bio-Based Membrane Enhancers on Shale Through Osmotic Pressure Measurements

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Knowledge on shale formations which make up almost 70% of the wellbore section is crucial since drilling through shale formations are very problematic. Various mud configurations have been designed to curtail these challenges over the years. One of the approaches in solving this challenge is designing optimum membrane efficient water-based drilling fluids capable of generating high osmotic pressures in shales. A set of integrated experiments have been conducted on selected bio-based plants containing saponin responsible for bio-plants surfactant acting property. The crude extracts containing saponins were used to design a water-based mud and deployed in a series of pore pressure transmission inhibition studies through measurements of membrane efficiency, wettability, and zeta potential analysis measurements. Results indicated that the bio-surfactants can create the much needed high osmotic pressure in shales leading to significantly improved membrane efficiency of the shale of over 80%. The results confirmed the leaky nature of shales as semipermeable membranes and membrane efficiency was found possible to be a function of the saponin concentration. Membrane efficiencies in shales were found to be low with high-permeability shales not showing membrane efficiency at all. Further analysis of the data showed that the flux of ions is a function of the ionic radii, shale permeability, and the cation exchange capacity of the shale. Stability of the shale was sustained to a larger extent by the reduction the drilling fluid water activity ability in creating a high osmotic pressure in shales

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AE:

Aralia elata

CEC:

Cation exchange capacity

CF:

Cordyline fruitcosa

CGD:

Company given data

CH-CMC:

Cocoa husk carboxymetylcellulose

CMC:

Critical Micelle concentration

CMLC:

Carboxymethyl cellulose

CO:

Chromolaena Odorata

DC:

Dioscorea cayenensis

DIW:

Deionized water

F-CO:

Flower of Chromolaena odorata

ME:

Membrane efficiency

Awdf :

Test fluid water activity

Awsh :

Pore fluid water activity

V :

Partial Molar Volume of Water

PV:

Panicum virgatum

R :

Gas constant

R-CO:

Root of Chromolaena odorata

SBDF:

Synthetically-based drilling fluids

S-PV:

Stem of Panicum virgatum

TG:

Tectona grandis

TT:

Tribulus terrestris

P :

Differential pressure in sample shale after attaining equilibrium

T :

Absolute temperature (°K),

LPLT:

Low pressure low temperature

σ :

Membrane efficiency

П:

Ideal osmotic pressure

UCS:

Uniaxial compressive strength

WBDF:

Water-based drilling fluid

HPHT:

High-pressure high temperature

References

  1. Zhong, H.; Yang, T.; Yin, H.; Lu, J.; Zhang, K.; Fu, C.: Role of Alkali type in chemical loss and ASP-flooding enhanced oil recovery in Sandstone formations. SPE Reserv. Eval. Eng. 23, 431–445 (2020). https://doi.org/10.2118/191545-PA

    Article  Google Scholar 

  2. Guo, T.; Tang, S.; Liu, S.; Liu, X.; Xu, J.; Qi, N.; Rui, Z.: Physical simulation of hydraulic fracturing of large-sized tight sandstone outcrops. SPE J. 2020, 1–22 (2020). https://doi.org/10.2118/204210-pa

    Article  Google Scholar 

  3. Oseh, J.O.; Norddin, M.N.A.M.; Muhamad, H.N.; Ismail, I.; Gbadamosi, A.O.; Agi, A.; Ismail, A.R.; Blkoor, S.O.: Influence of (3–Aminopropyl) triethoxysilane on entrapped polypropylene at nanosilica composite for shale swelling and hydration inhibition. J. Pet. Sci. Eng. 194, 107560 (2020). https://doi.org/10.1016/j.petrol.2020.107560

    Article  Google Scholar 

  4. Keshavarz Moraveji, M.; Ghaffarkhah, A.; Agin, F.; Talebkeikhah, M.; Jahanshahi, A.; Kalantar, A.; Amirhosseini, S.F.; Karimifard, M.; Mortazavipour, S.I.; Sehat, A.A.; Arjmand, M.: Application of amorphous silica nanoparticles in improving the rheological properties, filtration and shale stability of glycol-based drilling fluids. Int. Commun. Heat Mass Transf. 2020, 115 (2020). https://doi.org/10.1016/j.icheatmasstransfer.2020.104625

    Article  Google Scholar 

  5. Rahman, M.T.; Negash, B.M.; Moniruzzaman, M.; Quainoo, A.K.; Bavoh, C.B.; Padmanabhan, E.: An Overview on the potential application of ionic liquids in shale stabilization processes. J. Nat. Gas Sci. Eng. 81, 103480 (2020). https://doi.org/10.1016/j.jngse.2020.103480

    Article  Google Scholar 

  6. van Oort, E.: On the physical and chemical stability of shales. J. Pet. Sci. Eng. 38, 213–235 (2003). https://doi.org/10.1016/S0920-4105(03)00034-2

    Article  Google Scholar 

  7. Schlemmer, R.; Patel, A.; Friedheim, J.; Young, S.; Bloys, B.: Progression of Water-based fluids based on amine chemistry—can the road lead to true oil mud replacements? AADE-03-NTCE-36 AADE 2003. Natl. Technol. Conf. Practical Solut. Drill. Challenges. 2003, 1–14 (2003)

    Google Scholar 

  8. AL-Bazali, T.: The impact of water content and ionic diffusion on the uniaxial compressive strength of shale. Egypt. J. Pet. 22, 249–260 (2013). https://doi.org/10.1016/j.ejpe.2013.06.004

    Article  Google Scholar 

  9. Lin, A.; Alali, M.; Almasmoom, S.; California, S.; Samuel, R.: IADC/SPE-189598-MS wellbore instability prediction using adaptive analytics and empirical mode decomposition. Soc. Petrol. Engineers 2018, 1–10 (2018)

    Google Scholar 

  10. May, P.; Deville, J.; Miller, J.; Burrows, K.: Environmentally acceptable shale inhibitors for high performance water-based muds. Int. Pet. Technol. Conf. 2020, 3 (2020). https://doi.org/10.2523/iptc-19902-ms

    Article  Google Scholar 

  11. Quainoo, A.K.; Negash, B.M.; Bavoh, C.B.; Ganat, T.O.; Tackie-Otoo, B.N.: A perspective on the potential application of bio-inhibitors for shale stabilization during drilling and hydraulic fracturing processes. J. Nat. Gas Sci. Eng. 79, 103380 (2020). https://doi.org/10.1016/j.jngse.2020.103380

    Article  Google Scholar 

  12. Aslannezhad, M.; Keshavarz, A.; Kalantariasl, A.: Evaluation of mechanical, chemical, and thermal effects on wellbore stability using different rock failure criteria. J. Nat. Gas Sci. Eng. 78, 103276 (2020). https://doi.org/10.1016/j.jngse.2020.103276

    Article  Google Scholar 

  13. Cavanagh, A.: Benchmark calibration and prediction of the Sleipner CO 2 plume from 2006 to 2012. Energy Procedia. 37, 3529–3545 (2013). https://doi.org/10.1016/j.egypro.2013.06.246

    Article  Google Scholar 

  14. Mody, F.K.; Hale, A.H.: Borehole-stability model to couple the mechanics and chemistry of drilling-fluid/shale interactions. J. Pet. Technol. 45, 1093–1101 (1993). https://doi.org/10.2118/25728-PA

    Article  Google Scholar 

  15. Horsrud, P.; Bostrom, B.; Sonstebo, E.F.; Holt, R.M.: Interaction between shale and water-based drilling fluids: laboratory exposure tests give new insight into mechanisms and field consequences of KCl contents. Proc. SPE Annu. Tech. Conf. Exhib. 1998, 215–225 (1998). https://doi.org/10.2118/48986-MS

    Article  Google Scholar 

  16. Zhang, J.; Chenevert, M.E.; AL-Bazali, T.; Sharma, M.M.: A new gravimetric—swelling test for evaluating water and ion uptake in Shales. SPE Annu. Tech. Conf. Exhib. 2004, 5 (2004). https://doi.org/10.2118/89831-MS

    Article  Google Scholar 

  17. Meng, X.; Zhang, Y.; Zhou, F.; Chu, P.K.: Effects of carbon ash on rheological properties of water-based drilling fluids. J. Pet. Sci. Eng. 100, 1–8 (2012). https://doi.org/10.1016/j.petrol.2012.11.011

    Article  Google Scholar 

  18. Simpson, J.P.; Walker, T.O.; Jiang, G.Z.: Environmentally acceptable water-base mud can prevent shale hydration and maintain borehole stability. SPE Drill. Complet. 10, 242–249 (1995). https://doi.org/10.2118/27496-PA

    Article  Google Scholar 

  19. Mao, H.; Qiu, Z.; Shen, Z.; Huang, W.: Hydrophobic associated polymer based silica nanoparticles composite with core-shell structure as a filtrate reducer for drilling fluid at utra-high temperature. J. Pet. Sci. Eng. 129, 1–14 (2015). https://doi.org/10.1016/j.petrol.2015.03.003

    Article  Google Scholar 

  20. Oort, E.V.: A novel technique for the investigation of drilling fluid induced borehole instability in shales. Rock Mech. Petrol. Eng. 1994, 293–308 (1994)

    Google Scholar 

  21. Moslemizadeh, A.; Shadizadeh, S.R.: A natural dye in water-based drilling fluids: Swelling inhibitive characteristic and side effects. Petroleum. 3, 355–366 (2017). https://doi.org/10.1016/j.petlm.2016.08.007

    Article  Google Scholar 

  22. Ji, L.; Guo, Q.; Friedheim, J.; Zhang, R.; Chenevert, M.; Sharma, M.: Laboratory evaluation and analysis of physical shale inhibition of an innovative water-based drilling fluid with nanoparticles for drilling unconventional Shales. SPE Asia Pac. Oil Gas Conf Exhib. 2012, 1–12 (2012). https://doi.org/10.2118/158895-MS

    Article  Google Scholar 

  23. Tan, C.P.; Zeynaly-Andabily, M.E.; Rahman, S.S.: A novel method of screening drilling muds against mud pressure penetration for effective borehole wall support. IADC/SPE Asia Pac. Drill. Technol. 1996, 287–294 (1996). https://doi.org/10.2118/36401-MS

    Article  Google Scholar 

  24. Tan, C.P.; Wu, B.; Mody, F.K.; Tare, U.A.: Development and laboratory verification of high membrane efficiency water-based drilling fluids with oil-based drilling fluid-like performance in shale stabilization. Proc. SPE/ISRM Rock Mech. Pet. Eng. Conf. 2002, 88–99 (2002). https://doi.org/10.2118/78159-MS

    Article  Google Scholar 

  25. Yuan, H.; Diederix, K.: The role of membrane potential measurements in shaly sand evaluation. SPWLA 28th Annu. Logging Symp. 1987, 1–19 (1987)

    Google Scholar 

  26. Tare, U.A.; Mody, F.K.; Tan, C.P.: New generation of membrane efficient water-based drilling fluids: pragmatic and cost-effective solutions to borehole stability problems. Can. Int. Petrol. Conf. 2002, 1–11 (2002)

    Google Scholar 

  27. Al-Bazali, T.M.; Zhang, J.; Chenevert, M.E.; Sharma, M.M.: An experimental investigation on the impact of capillary pressure, diffusion osmosis, and chemical osmosis on the stability and reservoir hydrocarbon capacity of Shales. Offshore Eur. (2009). https://doi.org/10.2118/121451-MS

    Article  Google Scholar 

  28. Villabona-camacho, J.; Orozco-orozco, S.: Assembly of a methodology for determination of membrane efficiency in preserved shales. Ciner. Tecnol. Fut. 3, 67–84 (2009)

    Google Scholar 

  29. Schlemmer, R.; Friedheim, J.E.; Growcock, F.B.; Bloys, J.B.; Headley, J.A.; Polnaszek, S.C.: Membrane efficiency in Shale—an empirical evaluation of drilling fluid chemistries and implications for fluid design. Proc. IADC/SPE Drill. Conf. 2002, 5 (2002). https://doi.org/10.2523/74557-MS

    Article  Google Scholar 

  30. Osuji, C.E.; Chenevert, M.E.; Sharma, M.M.: SPE 116306 effect of porosity and permeability on the membrane efficiency of Shales. SPE Annu. Tech. Conf. 2008, 21–24 (2008)

    Google Scholar 

  31. Fritz, S.J.; Marine, I.W.: Experimental support for a predictive osmotic model of clay membranes. Geochim. Cosmochim. Acta. 47, 1515–1522 (1983). https://doi.org/10.1016/0016-7037(83)90310-1

    Article  Google Scholar 

  32. Kang, Y.; She, J.; Zhang, H.; You, L.; Song, M.: Strengthening shale wellbore with silica nanoparticles drilling fluid. Petroleum. 2, 189–195 (2016). https://doi.org/10.1016/j.petlm.2016.03.005

    Article  Google Scholar 

  33. Zhong, H., Qiu, Z., Huang, W., Caojie, China), C.U. of P. (East, Huang, D., Company, D.F.S. of B.D. and E.E., Li, H., Drilling technology research insitute of shengli petroleum: Successful application of unique polyamine high performance waterbased drilling fluid in Bohai Bay Shale Formations. In: Proc. IPTC Int. Pet. Technol. Conf., pp. 1–12 (2013)

  34. van Oort, E.; Hale, A.H.; Mody, F.K.; Roy, S.: Transport in Shales and the design of improved water-based shale drilling fluids. SPE Drill. Complet. 11, 137–146 (1996). https://doi.org/10.2118/28309-PA

    Article  Google Scholar 

  35. AL-Bazali, T.; Zhang, J.; Chenevert, M.E.; Sharma, M.M.: A rapid, rigsite-deployable electrochemical test for evaluating the membrane potential of Shales. Soc. Petrol. Engineers 2005, 1–14 (2005)

    Google Scholar 

  36. Schlemmer, R.; Friedheim, J.; Growcock, F.; Llc, M.; Bloys, J.; Headley, J.; Polnaszek, S.: Chemical osmosis, shale, and drilling fluids. SPE Drill. Complet. 18, 318–331 (2003). https://doi.org/10.2118/86912-PA

    Article  Google Scholar 

  37. Wang, Z.; Yu, X.; Li, J.; Wang, J.; Zhang, L.: The use of biobased surfactant obtained by enzymatic syntheses forwax deposition inhibition and drag reduction in crude oil pipelines. Catalysts. 2016, 6 (2016). https://doi.org/10.3390/catal6050061

    Article  Google Scholar 

  38. Harborne, J.B.: Phytochemical methods; a guide to modern techniques of plant analysis (1998)

  39. Zhang, J.; Al-Bazali, T.M.; Chenevert, M.E.; Sharma, M.M.: Factors controlling the membrane efficiency of Shales when interacting with water-based and oil-based muds. SPE Drill. Complet. 23, 150–158 (2008). https://doi.org/10.2118/100735-PA

    Article  Google Scholar 

  40. Tan, C.P., Petroleum, C., Amanullah, M., Mody, F.K., International, S.: IADC/SPE 77192 novel high membrane efficiency water-based drilling fluids for alleviating problems in troublesome shale formations. In: IADC/SPE Asia Pacific Drill. Technol. held Jakarta, Indones., pp. 9–11 (2002)

  41. Ewy, R.; Stankovich, R.: Shale-fluid interactions measured under simulated downhole conditions. SPE/ISRM Rock Mech. Conf. 2002, 1–10 (2002). https://doi.org/10.2118/78160-MS

    Article  Google Scholar 

  42. Mitra, S.; Dungan, S.R.: Micellar properties of Quillaja Saponin. 1. Effects of temperature, salt, and pH on solution properties. J. Agric. Food Chem. 1997, 8561 (1997)

    Google Scholar 

Download references

Acknowledgements

We are grateful for the support from researchers and technicians from the Geological Department, University of Saskatchewan (UoS), and the Petroleum Research Laboratories of the Department of Petroleum Engineering, Kwame Nkrumah University of Science and Technology (Grant no. GNPC-PECHAIR-001) for the support given during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilberforce Nkrumah Aggrey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aggrey, W.N., Asiedu, N., Adenutsi, C.D. et al. Experimental Study of Bio-Based Membrane Enhancers on Shale Through Osmotic Pressure Measurements. Arab J Sci Eng 47, 10917–10931 (2022). https://doi.org/10.1007/s13369-021-05458-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05458-1

Keywords

Navigation