Skip to main content

Advertisement

Log in

Adsorption and Separation of Carbon Dioxide/Methane in Landfill Gas with Barium Ion–Modified Silica Gel

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Environmental issues caused by greenhouse gases are becoming more and more severe. The main components of landfill gas, carbon dioxide (CO2) and methane (CH4), are greenhouse gases, and the separation and recovery of them are a popular research topic. In order to improve the adsorption capacity of the silica gel adsorbent for landfill gas, a method such as modify silica gel with alkali metal ions is often used. It is to improve the selective adsorption capacity of CO2 by adjusting the polarizability and charge distribution of the silica gel surface while improving the separation effect of the mixed gas. In this study, the adsorption performance of a silica gel adsorbent modified or not with alkali metal ions was measured in terms of the adsorption and separation of a CO2/CH4 mixture (simulating landfill gas). The N2 adsorption and desorption curve of the silica gel adsorbent at 77 K was plotted by determining the specific surface area and pore-size distribution. The results indicated that the unmodified silica gel adsorbent had a large micropore volume and specific surface area and exhibited a high capacity to adsorb gas. After potassium chloride, calcium chloride, magnesium chloride, or barium chloride solution was used to modify the silica gel adsorbent, the adsorption performance of the modified silica gels was ranked as barium chloride > potassium chloride > calcium chloride > magnesium chloride. The best-performing concentration of barium chloride solution was 0.1 mol/L. The research results will provide certain reference for the fields of chemistry and environmental science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Lisk, D.J.: Environmental-effects of landfills. Sci. Total Environ. 100, 415–468 (1991). https://doi.org/10.1016/0048-9697(91)90387-t

    Article  Google Scholar 

  2. Yuan, H.; Wang, L.; Su, F.W.; Hu, G.: Urban solid waste management in Chongqing: challenges and opportunities. Waste Manag. 26(9), 1052–1062 (2006). https://doi.org/10.1016/j.wasman.2005.09.005

    Article  Google Scholar 

  3. Yechiel, A.; Shevah, Y.: Optimization of energy generation using landfill biogas. J. Energy Storage 7, 93–98 (2016). https://doi.org/10.1016/j.est.2016.05.002

    Article  Google Scholar 

  4. Wolfsberger, T.; Aldrian, A.; Sarc, R.; Hermann, R.; Hoellen, D.; Budischowsky, A.; Zoescher, A.; Ragossnig, A.; Pomberger, R.: Landfill mining: resource potential of Austrian landfills—evaluation and quality assessment of recovered municipal solid waste by chemical analyses. Waste Manag. Res. 33(11), 962–974 (2015). https://doi.org/10.1177/0734242x15600051

    Article  Google Scholar 

  5. Omar, H.; Rohani, S.: Treatment of landfill waste, leachate and landfill gas: a review. Front. Chem. Sci. Eng. 9(1), 15–32 (2015). https://doi.org/10.1007/s11705-015-1501-y

    Article  Google Scholar 

  6. Ryckebosch, E.; Drouillon, M.; Veruaeren, H.: Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35(5), 1633–1645 (2011). https://doi.org/10.1016/j.biombioe.2011.02.033

    Article  Google Scholar 

  7. Zhou, W.; Guo, J.; Tan, H.: Upgrading of methane from biogas by pressure swing adsorption. In: Cao, Z.; He, Y.H.; Sun, L.; Cao, X.Q. (eds.) Application of Chemical Engineering, Pts 1–3, vol. 236–238. Advanced Materials Research, pp. 268–271 (2011)

  8. Kamarrudin, N.; Zulkafli, N.H.; Sikirman, A.; Mahayuddin, N.M.; Sigau, B.A.; Hamid, K.H.K.; Akhbar, S.: Concentration and toxicological study on sanitary landfill gases at drilling point closed cell. In: 2013 IEEE Business Engineering and Industrial Applications Colloquium (2013)

  9. Bae, Y.S.; Snurr, R.Q.: Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 50(49), 11586–11596 (2011). https://doi.org/10.1002/anie.201101891

    Article  Google Scholar 

  10. Sigot, L.; Ducom, G.; Germain, P.: Adsorption of octamethylcyclotetrasiloxane (D4) on silica gel (SG): retention mechanism. Microporous Mesoporous Mater. 213, 118–124 (2015). https://doi.org/10.1016/j.micromeso.2015.04.016

    Article  Google Scholar 

  11. Dye, J.L.; Nandi, P.; Jackson, J.E.; Lefenfeld, M.; Bentley, P.A.; Dunyak, B.M.; Kwarcinski, F.E.; Spencer, C.M.; Lindman, T.N.; Lambert, P.; Jacobson, P.K.; Redko, M.Y.: Nano-structures and interactions of alkali metals within silica gel. Chem. Mater. 23(9), 2388–2397 (2011). https://doi.org/10.1021/cm2001623

    Article  Google Scholar 

  12. Aristov, Y.I.; Tokarev, M.; Cacciola, G.; Restuccia, G.: Selective water sorbents for multiple applications. 1. CaCl2 confined in mesopores of silica gel: sorption properties. React. Kinet. Catal. Lett. 59(2), 325–333 (1996). https://doi.org/10.1007/bf02068130

    Article  Google Scholar 

  13. Chen, Y.W.; Wu, J.S.: Investigation on relationship between breakdown strength enhancement of composites and dielectric characteristics of nanoparticle. IEEE Trans. Dielectr. Electr. Insul. 23(2), 927–934 (2016). https://doi.org/10.1109/tdei.2015.005378

    Article  MathSciNet  Google Scholar 

  14. Reimschuessel, H.K.; Mountford, G.A.: On adsorption of ozone on silica gel. J. Colloid Interface Sci. 25(4), 558 (1967). https://doi.org/10.1016/0021-9797(67)90068-9

    Article  Google Scholar 

  15. Demir, H.; Mobedi, M.; Ulku, S.: Microcalorimetric investigation of water vapor adsorption on silica gel. J. Therm. Anal. Calorim. 105(1), 375–382 (2011). https://doi.org/10.1007/s10973-011-1395-y

    Article  Google Scholar 

  16. Dogan, A.U.; Dogan, M.; Onal, M.; Sarikaya, Y.; Aburub, A.; Wurster, D.E.: Baseline studies of the clay minerals society source clays: specific surface area by the Brunauer Emmett Teller (BET) method. Clay Clay Min. 54(1), 62–66 (2006). https://doi.org/10.1346/ccmn.2006.0540108

    Article  Google Scholar 

  17. van Erp, T.S.; Martens, J.A.: A standardization for BET fitting of adsorption isotherms. Microporous Mesoporous Mater. 145(1–3), 188–193 (2011). https://doi.org/10.1016/j.micromeso.2011.05.022

    Article  Google Scholar 

  18. Hall, M.R.; Tsang, S.C.E.; Casey, S.P.; Khan, M.A.; Yang, H.: Synthesis, characterization and hygrothermal behaviour of mesoporous silica high-performance desiccants for relative humidity buffering in closed environments. Acta Mater. 60(1), 89–101 (2012). https://doi.org/10.1016/j.actamat.2011.09.016

    Article  Google Scholar 

  19. Shao, X.H.; Zhang, X.R.; Wang, W.C.: Comparison of density functional theory and molecular simulation methods for pore size distribution of mesoporous materials. Acta Physico-Chim. Sin. 19(6), 538–542 (2003). https://doi.org/10.3866/pku.Whxb20030612

    Article  Google Scholar 

  20. Hu, B.; Cheng, Y.P.; He, X.X.; Wang, Z.Y.; Jiang, Z.N.; Wang, C.H.; Li, W.; Wang, L.: New insights into the CH4 adsorption capacity of coal based on microscopic pore properties. Fuel 262, 9 (2020). https://doi.org/10.1016/j.fuel.2019.116675

    Article  Google Scholar 

  21. Hernandez, M.A.; Velasco, J.A.; Corona, L.; Asomoza, M.; Solis, S.; Rojas, F.; Lara, V.H.: Microporosity in silica synthesized by the sol–gel method. Adsorption of nitrogen at 76 K. Emerging Fields in Sol-Gel Science and Technology. Kluwer Academic Publishers, Norwell (2003)

  22. Choma, J.; Dziura, A.; Jamiola, D.; Marszewski, M.; Jaroniec, M.: Preparation of mesoporous carbons with high specific surface area and large pore volume. Ochrona Srodowiska 34(1), 3–7 (2012)

    Google Scholar 

  23. Chen, C.-H.; Tsaia, P.-J.; Lai, C.-Y.; Peng, Y.-L.; Soo, J.-C.; Chen, C.-Y.; Shih, T.-S.: Effects of uniformities of deposition of respirable particles on filters on determining their quartz contents by using the direct on-filter X-ray diffraction (DOF XRD) method. J. Hazard. Mater. 176(1–3), 389–394 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.042

    Article  Google Scholar 

  24. Tie, S.N.; Zhang, S.H.: Removal of free carbon and crystal structure change of amorphous silica fume by calcination. Int. J. Mod. Phys. B 31(16–19), 6 (2017). https://doi.org/10.1142/s0217979217440830

    Article  Google Scholar 

  25. Kahraman, S.; Onal, M.; Sarikaya, Y.; Bozdogan, I.: Characterization of silica polymorphs in kaolins by X-ray diffraction before and after phosphoric acid digestion and thermal treatment. Anal. Chim. Acta 552(1–2), 201–206 (2005). https://doi.org/10.1016/j.aca.2005.07.045

    Article  Google Scholar 

  26. Song, H.K.; Cho, K.W.; Lee, K.H.: Adsorption of carbon dioxide on the chemically modified silica adsorbents. J. Non-Cryst. Solids 242(2–3), 69–80 (1998). https://doi.org/10.1016/s0022-3093(98)00793-5

    Article  Google Scholar 

  27. Pirogov, A.V.; Kuzavlev, A.P.; Shpigun, O.A.: New stationary phases for normal-phase HPLC based on silica gel modified with magnesium, calcium, strontium, and barium salts. J Anal. Chem. 60(8), 747–751 (2005). https://doi.org/10.1007/s10809-005-0175-x

    Article  Google Scholar 

  28. Coker, H.: Empirical free-ion polarizabilities of alkali–metal, alkaline–earth metal, and halide ions. J. Phys. Chem. 80(19), 2078–2084 (1976). https://doi.org/10.1021/j100560a006

    Article  Google Scholar 

  29. Bu, X.; Wang, L.; Huang, Y.: Effect of pore size on the performance of composite adsorbent. Adsorpt. J. Int. Adsorpt. Soc. 19(5), 929–935 (2013). https://doi.org/10.1007/s10450-013-9513-8

    Article  Google Scholar 

  30. Farrell, J.; Grassian, D.; Jones, M.: Investigation of mechanisms contributing to slow desorption of hydrophobic organic compounds from mineral solids. Environ. Sci. Technol. 33(8), 1237–1243 (1999). https://doi.org/10.1021/es980732f

    Article  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Fundamental Research Funds for the Central Universities (Project No. 2019CDCGHJ325).

Funding

This research was supported by the Fundamental Research Funds for the Central Universities (Project No. 2019CDCGHJ325).

Author information

Authors and Affiliations

Authors

Contributions

YC, KJC: preparation, creation and/or presentation of the published work, specifically writing the initial draft (including substantive translation). CZ, CL: ideas; formulation or evolution of overarching research goals and aims. LL, FY, XHW: application of statistical, mathematical, computational, or other formal techniques to analyze or synthesize study data. MQR, FX: Ideas; formulation or evolution of overarching research goals and aims. LAW: preparation, creation and/or presentation of the published work by those from the original research group, specifically critical review, commentary or revision—including pre- or post-publication stages.

Corresponding author

Correspondence to Li’ao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Chen, K., Zhong, C. et al. Adsorption and Separation of Carbon Dioxide/Methane in Landfill Gas with Barium Ion–Modified Silica Gel. Arab J Sci Eng 47, 5491–5500 (2022). https://doi.org/10.1007/s13369-021-05454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05454-5

Keywords

Navigation