Skip to main content
Log in

Determination of Fracture Toughness and KIC-CVN Correlations for BM, HAZ, and WB in API 5L X60 Pipeline

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a study to determine the fracture toughness for the API 5L X60 pipeline in the base metal (BM), the heat-affected zone (HAZ), and the welding bead (WB) by SE(B) specimens in the short transverse direction in an API 5L X60 pipeline. Also, a comparison of the KIC results from SE(B) specimens and KIC-CVN (Charpy V-notch) correlation equations using CVN energy values was done. SE(B) specimens were machined and tested according to ASTM E339. Standard Charpy specimens were machined and tested according to ASTM E23. The notch remained within the evaluation zone to obtain KIC and Charpy specimens at the HAZ and WB. The KIC and CVN values are higher for the BM, followed by the HAZ and the WB. These KIC and CVN values are similar to those reported by other authors in API 5L pipelines. The decrease in KIC and CVN values is due to the microstructure present in the temperature transformations. For BM, the ferrite matrix with pearlite colonies could be presented, while for the WB zone, martensite and finer bainite are detected. In some regions of the HAZ temperatures are reached that promote the transformation of the ferritic/pearlitic structure of the BM into austenite. KIC-CVN correlation equations values should be used only to estimate KIC values when KIC data cannot be obtained from standard specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BM:

Base metal

CVN:

Charpy V-notch

HAZ:

Heat-affected zone

KIC :

Fracture toughness

WB:

Welding bead

References

  1. Anderson, T.L.: Fracture Mechanics Fundamentals and Applications, 3rd edn. Taylor and Francis, EUA, London (2006)

    MATH  Google Scholar 

  2. McEvily, A.J.: Metal Failures: Mechanisms, Analysis, Prevention, 2nd edn. Wiley , Hoboken (2002)

    Google Scholar 

  3. Angeles-Herrera, D.; González-Velázquez, J.L.; Morales-Ramírez, A.: Fracture-toughness evaluation in submerged arc welding seam welds in nonstandard curved SE(B) specimens in the short radial direction of API 5L steel pipe. J. Test. Eval. 40(6), 886–889 (2012)

    Article  Google Scholar 

  4. Velázquez, J.L.: Mecánica de Fractura. Noriega-Limusa, México (2004)

    Google Scholar 

  5. ASTM E399: Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIC of Metallic Materials. American Society for Testing and Materials, Philadelphia (2009)

  6. Broek, D.: Elementary Engineering Fracture Mechanics, 4th edn. Martinus Nijhoff, Leiden (1986)

    MATH  Google Scholar 

  7. Asghari, V.; Choupani, N.; Hanifi, M.: CVN-KJC correlation model for API 5L X65 gas pipelines. Eng. Fail. Anal. 79, 51–63 (2017)

    Article  Google Scholar 

  8. Calero Zavaleta D.A.: Caracterización de las propiedades de tenacidad a la fractura del acero API 5LX65 mediante el método de ensayo ASTM E 1820. Pontificia Universidad Católica del Perú (2015)

  9. ASTM E1820-09: Standard test method for measurement of fracture toughness. American Society for Testing and Materials, Philadelphia (2009)

  10. Tomasek, T.; Mares, V.; Horsak, L.; Fracture toughness and instrumented Charpy testing of Steel prepared by MIM method and results correlation by KIC-CVN relationships. New methods of damage and failure analysis of structural parts, 10–14 September, Ostrava, Czech Republic (2019)

  11. Li, X.; Song, Y.; Ding, Z.; Bao, S.; Gao, Z.: A modified correlation between KJIC and Charpy V-notch impact energy of Chinese SA508-III Steel at the upper shelf. J. Nucl. Mater. 505, 22–29 (2018)

    Article  Google Scholar 

  12. Liu, H.B.; Zhang, H.Q.; Li, J.F.: Toughness of SA738GrB steel used for nuclear containment vessel. Int. J. Pres. Ves. Pip. 168, 200–209 (2018)

    Article  Google Scholar 

  13. Hemmouche, L.; Meghalet, A.; Henni, C.A.: Influence of heat treatments on the fracture toughness of 2017A aluminium alloy. Phys. Metals Metallogr. 119(3), 301–308 (2018)

    Article  Google Scholar 

  14. Riyanta, B.; Wardana, I.N.G.; Irawan, Y.S.; Choiron, M.A.: AISI 304 welding fracture resistance by a Charpy impact test with a high speed sampling rate. Metals 12543(7), 1–15 (2017)

    Google Scholar 

  15. McNicol, R.C.: Correlations of Charpy test results for standard and nonstandard size specimens. Weld. Res. Suppl. WRC 385, 385–393 (1965)

    Google Scholar 

  16. Phaal, R.; Macdonald, K.A.; Brown, P.A.: Correlations between fracture and Charpy impact Energy, Report from the Cooperative Research Programmed for Industrial Members Only, TWI Report 504/1994. The Welding Institute, Cambridge (1994)

    Google Scholar 

  17. Barsom, J.M.; Rolfe, S.T.: Fracture and Fatigue Control in Structures, 2nd edn. Prentice Hall, Englewood Cliffs, New York (1987)

    Google Scholar 

  18. Rolfe, S.T.; Novak, S.R.; Slow-bend KIC testing of medium high-toughness steel, in: Review of development in plane strain fracture toughness testing, ASTM STP 463, ASTM pp. 124–159 (1970)

  19. Roberts, R.; Newton, C.: Interpretive Report on Small Scale Test Correlations with KIC Data, WRC Bulletin 265. Welding Research Council, New York (1981)

    Google Scholar 

  20. Sailors, R.H.; Corten, H.T.; Relations between material fracture toughness using fractures mechanics and transition temperature test. In: Fracture Toughness, Proceeding of the 1972, National Symposium on Fracture Mechanics-Part II, STP 514. ASTM, pp. 164–191 (1972)

  21. Wullaert, R.A.; Fracture toughness predictions from Charpy V-notch data, what does the Charpy test really tell us?. In: Proceeding of the American Institute of Mining, Metallurgical and Petroleum Engineers. American Society for Metals (1978)

  22. Roberts, R.; Newton, C.: Interpretive report on small-scale test correlations with KIC data. Weld. Res. Counc. Bull. 299, 1–24 (1981)

    Google Scholar 

  23. Barsom, J.M.: The development of AASHTO fracture toughness requirements for bridge steels. Eng. Fract. Mech. 7(3), 605–618 (1975)

    Article  Google Scholar 

  24. Norris, D.M.; Reaugh, J.E.; Server, W.L.; A fracture-toughness correlation based on charpy initiation energy, fracture mechanics. In: Thirteenth Conference, STP 473. ASTM (1981)

  25. Walling, K.; New report methodology for selecting Charpy toughness criteria for thin high strength steels. In: Report Represented to Commission X, IIW 1994, Annual assembly, Beijing, IIW DOC. NO. X.1290-94 (1994)

  26. Terán, G.; Capula-Colindres, S.; Angeles-Herrera, D.; Velazquez, J.C.; Fernandez-Cueto, M.J.: Estimation of fracture toughness KIC from Charpy impact test data in T-welded connections repaired by grinding and wet welding. Eng. Fract. Mech. 153, 351–359 (2016)

    Article  Google Scholar 

  27. Matusevich, A.E.; Mancini, R.A.; Giudici, A.J.: Determinación de la tenacidad a la fractura del material de un gasoducto. Rev. Latin Am. Metal. Mat. 32(2), 253–260 (2012)

    Google Scholar 

  28. Terán, G.; Capula-Colindres, S.; Velázquez, J.C.; Angeles-Herrera, A.; Torres- Santillán, E.; Bracarense, A.Q.: Fracture toughness and charpy CVN Data for A36 steel with wet welding. Soldag. Insp. 22(3), 258–268 (2017)

    Article  Google Scholar 

  29. Angeles-Herrera, D.; Albiter, A.; Cuamatzi-Meléndez, R.; Terán, G.; Ochoa-Ruiz, G.: Fracture-toughness and fatigue crack growth evaluation in the transversal direction of the longitudinal weld of an API X52 steel pipeline. J. Test. Eval. 6(5), 2110–2120 (2018)

    Google Scholar 

  30. Amano, T.; Fujishiro, T.; Shinohara, Y.; Inoue, T.: Evaluation of pres-strain effect on abnormal fracture occurrence in drop-weight tear test for linepipe Steel with high Charpy energy. Procedia Struct. Integr. 2, 422–429 (2016)

    Article  Google Scholar 

  31. Majidi-Jirandehi, A.A.; Hashemi, S.H.: Weld metal fracture characterization of API X65 steel using drop weight tear test. Mater. Res. Express 6, 016552 (2019)

    Article  Google Scholar 

  32. Chan, P.H.; Tshai, K.Y.; Johnson, M.; Li, S.: Finite element analysis of combined static loading on offshore pipe riser repaired with fibre-reinforced composite laminates. J. Reinf. Plast. Compos. 33(6), 514–525 (2013)

    Article  Google Scholar 

  33. ASTM E23: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. American Society for Testing and Materials, Philadelphia (2012)

  34. Adib-Ramezani, H.; Jeong, J.; Pluvinage, G.: Structural integrity evaluation of X52 gas pipe subjected to external corrosion defects using the SINTAP procedure. Int. J. Pres. Ves. Pip. 83, 420–432 (2006)

    Article  Google Scholar 

  35. Adib, H.; Jallouf, S.; Schmitt, C.; Carmasol, A.; Pluvinage, G.: Evaluation of the effect of corrosion defects on the structural integrity of X52 gas pipelines using the SINTAP procedure and notch theory. Int. J. Pres. Ves. Pip. 84, 123–131 (2007)

    Article  Google Scholar 

  36. Beltrán-Zuñiga, M.A.; González-Velázquez, J.L.; Rivas-Lopéz, D.I.; Dorantes-Rosales, H.J.; Hernández-Santiago, F.: Effect of microstructure and crystallographic texture on the toughness anisotropy of API 5L X46 steel. Fatigue Fract. Eng. Mater. 41(4), 1–13 (2018)

    Article  Google Scholar 

  37. Coppola, T.; Iob, F.; Cortese, L.; Campanelli, F.: Prediction of ductile fracture in anisotropic steels for pipeline application. Procedia Struct. Integr. 2, 2936–2943 (2016)

    Article  Google Scholar 

  38. Hart, J.D.; Zulfigar, N.; Zhou, J.; Evaluation of anisotropic pipe steel stress–strain relationaship influence on strain demand. In: Proceeding of the 2012 9th International Pipeline Conference, September 24–28, 2012, Calgary, Alberta, Cánada. pp. 1–12 (2012)

  39. Pérez, N.: Fracture Mechanics, 2nd edn. Springer, Dordrecht (2017)

    Book  Google Scholar 

  40. Beltrán-Zuñiga, M.A.; González-Velázquez, J.L.; Rivas-Lopéz, D.I.; Hernández-Santiago, F.; Dorantes-Rosales, H.J.; Lopéz-Hirata, V.M.: Determination of fracture toughness in the short transverse direction of low carbon steel pipes by compact-tension specimens completed by welded attachments. Eng. Fract. Mech. 222, 106711 (2019)

    Article  Google Scholar 

  41. Jang-Bog, J.; Jung-Suk, L.; Jae-il, J.: Fracture toughness anisotropy in an API Steel line-pipe. Mater. Lett. 61(29), 5178–5180 (2007)

    Article  Google Scholar 

  42. Angeles-Herrera, D.; Albiter-Hernández, A.; Cuamatzi-Meléndez, R.; Morales-Ramirez, A.: Influence of non-metallic inclusion on the fracture toughness properties on the longitudinal welding of an API 5L steel pipeline. J. Test. Eval. 45(2), 687–694 (2017)

    Article  Google Scholar 

  43. Meng, L.: Characterization of tensile and fracture properties of X52 steel pipe and their girt welds. Master of Science, Department of civil and environmental engineering, University of Alberta (2015)

  44. Pluvinage, G.; Ben-Amara, M.; Capelle, J.; Azari, Z.: Role of constraint on ductile brittle transition temperature of pipe steel X65. Procedia Mater. Sci. 3, 1560–1565 (2014)

    Article  Google Scholar 

  45. Capelle, J.; Furtado, J.; Azari, Z.; Jallais, S.; Pluvinage, G.: Design based on ductile-brittle transition temperature for API 5L X65 steel used for dense CO2 transport. Eng. Fract. Mech. 110, 270–280 (2013)

    Article  Google Scholar 

  46. Capelle, J.; Ben-Amara, M.; Pluvinage, G.; Azari, Z.: Role of constrain on the shift of ductile-brittle transition temperatura of subsize Charpy specimen. Fatigue Fract. Eng. Mater. 37(12), 1367–1376 (2014)

    Article  Google Scholar 

  47. Hashemi, S.H.; Mohammadyani, D.: Characterisation of weldment hardness, impact energy and microstructure in API X65 steel. Int. J. Pres. Ves. Pip 98, 8–15 (2012)

    Article  Google Scholar 

  48. Hashemi, S.H.; Mohammadyani, D.: Mechanical characterization of submerged arc weldment in API gas pipeline steel of grade X65. In: International Conference on Advances in Materials and Processing Technologies (2010)

  49. Beltrán-Zuñiga, M.; González, J.L.; Rivas, D.I.; Hernández, F.; Dorantes, H.: The effect of pearlite banding on the mechanical anisotrophy of low carbon steel. In: Proceedings of the 17th International Conference on New Trends in Fatigue and Fracture (2018)

  50. Beltrán, M.A.; González, J.L.; Rivas, D.; Hernández, F.; Dorantes, H.: On the role of microstructural properties on mechanical behavior of API X46 steel. Procedia Struct. Integr. 3, 57–67 (2017)

    Article  Google Scholar 

  51. Joo, M.S.; Suh, D.W.; Bae, J.H.; Bhadeshia, H.K.D.H.: Toughness anisotropy in X70 and X80 linepipe steels. Mater. Sci. Technol. 30(4), 439–446 (2013)

    Article  Google Scholar 

  52. Santanna, P.C.; Rizzo, E.M.S.; Gomes, S.I.N.; Ferreira, I.: Mechanical properties of API 5L X65 steel submitted to intercritical heat treatments. In: Congreso Brasilero de Engenharia e Ciencia dos Materiais (CBECIMAT), Natal (2002)

  53. Maksuti, R.: Impact of the acicular ferrite on the Charpy V-notch toughness of submerged arc Weld metal deposits. Int. J. Sci. Eng. 7(8), 1149–1155 (2016)

    Google Scholar 

  54. Marconi, C.; Castillo, M.J.; Boccanera, L.; Ramimi, M.: Influencia del calor aportado sobre las propiedades mecánicas y la microestructura de juntas soldadas por FCAW de acero microaleado de alta resistencia. Soldag. Insp. 20(2), 148–159 (2015)

    Article  Google Scholar 

  55. Hashemi, S.H.; Mohammadyani, D.: Characterization of weldment hardness, impact energy and microstructure in API X65 steel. Int. J. Pres. Ves. Pip. 98, 8–15 (2012)

    Article  Google Scholar 

  56. Sung, J.M.; Woo, S.D.; Bhadeshia, H.K.D.H.: Mechanical anisotropy in steels for pipelines. ISIJ Int. 53(8), 1305–1314 (2013)

    Article  Google Scholar 

  57. Min, S. J.: Anisotropy of Charpy properties in linepipe Steel. Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Thesis for Doctor of Philosophy (2012)

Download references

Acknowledgements

The authors thank the ESIQIE-IPN, CIITEC-IPN, TecNM/ITS de Tantoyuca (ITSTa), and CONACYT México for the financial and material support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Angeles-Herrera.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarading the publication of his paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capula-Colindres, S., Terán, G., Angeles-Herrera, D. et al. Determination of Fracture Toughness and KIC-CVN Correlations for BM, HAZ, and WB in API 5L X60 Pipeline. Arab J Sci Eng 46, 7461–7469 (2021). https://doi.org/10.1007/s13369-021-05451-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05451-8

Keywords

Navigation