Skip to main content
Log in

Thermal-Transient Analysis for Cooling Time on New Formulation of Metal Epoxy Composite (MEC) as Mold Inserts

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In injection molding process (IMP), the cooling phase is greatly affected by thermal conductivity as the main factor for conductive heat transfer which represents about 70–80% of the cycle time. Recently, most researchers focus on overcoming the limitation with regard to poor thermal conductivity by developing a new formulation of metal epoxy composite materials as mold inserts for rapid tooling (RT) in IMP. Thus, this research investigates the performance of the cooling efficiency of mold inserts fabricated using epoxy resin mixed with filler particles consisting of aluminum, brass and copper. The transient thermal analysis carried out using the ANSYS simulation software was used to evaluate cooling performance of mold inserts made from various types of filler particles mixed with epoxy. The results obtained will be compared with the results of using P20 mold steel, which is the common material used as mold insert for RT. The simulation results showed that inserting a copper filler particle in the epoxy mold inserts was able to improve the efficiency of cooling time and definitely improve the cycle time of IMP. It is expected that a better mold insert in terms of cooling efficiency could be produced using RT technologies, thus, offering more profit to the molding industries without compromising the quality of molded parts produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Atzeni, E.; Iuliano, L.; Minetola, P.; Salmi, A.: Redesign and cost estimation of rapid manufactured plastic parts. Rapid Prototyp. J. 16, 308–317 (2010)

    Article  Google Scholar 

  2. Equbal, A.; Sood, A.K.; Shamim, M.: Rapid tooling: a major shift in tooling practice. J. Manuf. Ind. Eng. 14, 1–9 (2015)

    Google Scholar 

  3. Mendible, G.A.; Rulander, J.A.; Johnston, S.P.: Comparative study of rapid and conventional tooling for plastics injection molding. Rapid Prototyp. J. 23, 344–352 (2017)

    Article  Google Scholar 

  4. Khushairi, M.; Tanwyn, M.; Sharif, S.; Ani, J.S.M.: Evaluation of mechanical properties of filled epoxy composite for improving mould performance—a review. Appl. Mech. Mater. 735, 13–18 (2015)

    Article  Google Scholar 

  5. Pontes, A.J.; Queiros, M.P.; Martinho, P.G.; Bartolo, P.J.; Pouzada, A.S.: Experimental assessment of hybrid mould performance. Int. J. Adv. Manuf. Technol. 50, 441–448 (2010)

    Article  Google Scholar 

  6. Shayfull, Z.; Sharif, S.; Zain, A.M.; Ghazali, M.F.; Saad, R.M.: Potential of conformal cooling channels in rapid heat cycle molding: a review. Adv. Polym. Technol. 33, 1–24 (2014)

    Article  Google Scholar 

  7. Khushairi, M.T.M.; Sharif, S.; Jamaludin, K.R.; Razak, Z.; Shah, Z.N.; Suhaimi, M.A.; Shayfull, Z.: Development of Metal filled epoxy inserts for injection moulding process. AIP Conf Proc. 2030, 020084 (2018)

    Article  Google Scholar 

  8. Pouzada, A.S.S.: Hybrid moulds: a case of integration of alternative materials and rapid prototyping for tooling. Virtual Phys. Prototyp. 4, 195–202 (2009)

    Article  Google Scholar 

  9. Bauer, P.; Becker, Y.N.; Motsch-Eichmann, N.; Mehl, K.; Müller, I.; Hausmann, J.: Hybrid thermoset-thermoplastic structures: an experimental investigation on the interface strength of continuous fiber-reinforced epoxy and short-fiber reinforced polyamide 6. Compos. Part C Open Access. 3, 100060 (2020)

    Article  Google Scholar 

  10. Neves, A.F.; Salmoria, G.V.; Ahrens, C.H.; Pouzada, A.S.; Silva, M.A.: Assessment of injection moulded parts of PP/nanoclay produced with hybrid moulds. Mater. Sci. Forum. 732, 963–968 (2013)

    Google Scholar 

  11. Kuo, C.C.; Chen, W.H.; Zhang, J.W.; Tsai, D.A.; Cao, Y.L.; Juang, B.Y.: A new method of manufacturing a rapid tooling with different cross-sectional cooling channels. Int. J. Adv. Manuf. Technol. 92, 3481–3487 (2017)

    Article  Google Scholar 

  12. Rahmati, S.: Direct rapid tooling. In: Comprehensive Materials Processing. Elsevier, Iran (2014)

  13. Tekce, H.S.; Kumlutas, D.; Tavman, I.H.: Effect of particle shape on thermal conductivity of copper reinforced polymer composites. J. Reinf. Plast. Compos. 26, 113–121 (2007)

    Article  Google Scholar 

  14. Moradi, S.; Calventus, Y.; Roman, F.; Hutchinson, J.M.: Achieving high thermal conductivity in epoxy composites: effect of boron nitride particle size and matrix-filler interface. Polimers 11, 1156 (2019)

    Article  Google Scholar 

  15. Lee, J.; Yun, T.S.; Choi, S.: The effect of particle size on thermal conduction in granular mixtures. Materials 8, 3975–3991 (2015)

    Article  Google Scholar 

  16. Altaf, K.; Majdi, A.; Rani, A.; Ahmad, F.; Baharom, M.; Raghavan, V.R.: Determining the effects of thermal conductivity on epoxy molds using profiled cooling channels with metal inserts. J. Mech. Sci. Technol. 30, 4901–4907 (2016)

    Article  Google Scholar 

  17. Khushairi, M.T.M.; Sharif, S.; Jamaludin, K.R.; Mohruni, A.S.M.: Effects of metal fillers on properties of epoxy for rapid tooling inserts. Int. J. Adv. Sci. Eng. Inf. Technol. 7, 1155–1161 (2017)

    Article  Google Scholar 

  18. Goncalves, P.M.; Pouzada, P.J.B.; Sergio, A.: Hybrid moulds: effect of the moulding blocks on the morphology and dimensional properties. Rapid Prototyp. J. 1, 71–82 (2009)

    Article  Google Scholar 

  19. Gibson, I.; Rosen, D.; Stucker, B.: Rapid tooling. Addit. Manuf, Technol (2015)

    Google Scholar 

  20. Hopkinson, N.; Dickens, P.: A comparison between stereolithography and aluminium injection moulding tooling. Rapid Prototyp. J. 6, 253–258 (2000)

    Article  Google Scholar 

  21. de Carvalho, A.F.; Souza, A.F.; de Howarth, J.L.L.: Mechanical and dimensional characterisation of polypropylene injection moulded parts in epoxy resin/aluminium inserts for rapid tooling. Int. J. Mater. Prod. Technol. 52, 37–52 (2016)

    Article  Google Scholar 

  22. Srivastava, V.K.; Verma, A.: Mechanical behaviour of copper and aluminium particles reinforced epoxy resin composites. Am. J. Mater. Sci. 5, 84–89 (2015)

    Google Scholar 

  23. Agunsoye, J.O.; Talabi, S.I.; Hassan, S.B.; Awe, I.O.; Bello, S.A.: The development and characterisation of aluminium dross-epoxy resin composite materials. J. Mater. Sci. Res. 3, 23–37 (2014)

    Google Scholar 

  24. Lior Zonder, N.S.: Precision prototyping:The role of 3D printed molds in injection molding industry. https://www.sys-uk.com/wp-content/uploads/2018/02/EN-A4-White-Paper-Precision-Prototyping-The-Role-of-3D-Printed-Molds-in-the-Injection-Molding-Industry.pdf. Accessed 26 Nov 2019

  25. Rahim, S.Z.A.; Sharif, S.; Zain, A.M.; Nasir, S.M.; Mohd Saad, R.; Zain, A.M.; Sharif, S.; Mohd Saad, R.: Improving the quality and productivity of molded parts with a new design of conformal cooling channels for the injection molding process. Adv. Polym. Technol. 35, 21524 (2016)

    Article  Google Scholar 

  26. Rao, N.S.; Schumacher, G.; Schott, N.R.; O’brien, K.T.: Optimization of cooling systems in injection molds by an easily applicable analytical model. J. Reinf. Plast. Compos. 21, 451–459 (2002)

    Article  Google Scholar 

  27. Lin, Z.-C.; Chou, M.-H.: Design of the cooling channels in nonrectangular plastic flat injection mold. J. Manuf. Syst. 21, 167–186 (2002)

    Article  Google Scholar 

  28. Park, S.J.; Kwon, T.H.: Optimal cooling system design for the injection molding process. Polym. Eng. Sci. 38, 1450–1462 (1998)

    Article  Google Scholar 

  29. Zhou, H.; Li, D.: Mold cooling simulation of the pressing process in TV panel production. Simul. Model. Pract. Theory. 13, 273–285 (2005)

    Article  Google Scholar 

  30. Rao, N.S.; Schumacher, G.: Design Formulas for Plastics Engineers. Hanser Carl Hanser Verlag GmbH Co KG, Munich (2014)

    Google Scholar 

  31. Standard, I.: ISO 3167:2014 (EN) Plastics—Multipurpose Test Specimens. ISO, Geneva (2014)

    Google Scholar 

  32. Nasir, S.M.: Evaluation of shrinkage and weld line strength on thick flat part in injection moulding process. Ph.d. dissertation, Universiti Malaysia Perlis, Perlis, Malaysia (2016)

  33. Kazmer, D.O.: Injection Mold Design Engineering. Carl Hanser Verlag GmbH & Co. KG, Munich (2016)

    Book  Google Scholar 

  34. RenCast CW 47_ HY33.: Casting Resin Aluminium Filled Epoxy Resin System With Outstanding Heat Resistance. https://www.huntsman.com/products. Accessed 15 Jan 2020

  35. Wohlers, T.: Additive Manufacturing State of the Industry, Wohlers Report 2020. https://wohlersassociates.com/state-of-the-industry-reports.html. Accessed 26 Nov 2019

  36. Kuo, C.C.; Wu, M.X.: Evaluation of service life of silicone rubber molds using vacuum casting. Int. J. Adv. Manuf. Technol. 90, 3775–3781 (2017)

    Article  Google Scholar 

  37. Mohd Khushairi, M.T.; Sharif, S.; Mohd Ani, J.S.: Parameter design for hardness of metal filled epoxy matrix. Adv. Mater. Res. 1125, 152–156 (2015)

    Article  Google Scholar 

  38. Abdellah El-Hadj, A.; Abd Rahim, S.Z.; Mat Saad, M.N.; Tan, C.L.: Cooling analysis of cylindrical void method for an injection mould in injection moulding process. Arab. J. Sci. Eng. 45, 5285–5294 (2020)

    Article  Google Scholar 

  39. ISO 294-1:2017: Plastics—Injection moulding of test specimens of thermoplastic materials—part 1: general principles, and moulding of multipurpose and bar test specimens

  40. Saifullah, A.B.M.; Masood, S.H.; Sbarski, I.: Thermal–structural analysis of bi-metallic conformal cooling for injection moulds. Int. J. Adv. Manuf. Technol. 62, 123–133 (2012)

    Article  Google Scholar 

  41. Gruber, P.A.; de Miranda, D.A.: Heat transfer simulation for decision making in plastic injection mold design. Polimeros 30, 2020 (2020)

    Article  Google Scholar 

  42. Alves De Miranda, D.; Nogueira, A.L.: Simulation of an injection process using a cae tool: assessment of operational conditions and mold design on the process efficiency. Mater. Res. 22, 20180564 (2019)

    Article  Google Scholar 

  43. Sobhy, M.; Alotebi, M.S.: Transient hygrothermal analysis of FG sandwich plates lying on a visco-pasternak foundation via a simple and accurate plate theory. Arab. J. Sci. Eng. 43, 5423–5437 (2018)

    Article  Google Scholar 

  44. Khoukhi, M.; Tahat, M.: Effect of temperature and density variations on thermal conductivity of polystyrene insulation materials in oman climate. J. Eng. Phys. Thermophys. 88, 994–998 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the German Malaysian Institute, Universiti Malaysia Perlis and Universiti Teknologi Malaysia for the cooperation and assistance in conducting this research. Special appreciation to the Research Management Centre of UTM and the Ministry of Higher Education for the financial support through the UTM research university Grant (RUG) Q.J130000.3509.06G38, Q.J130000.2409.08G37and FRGS/1/2020/TK0/UNIMAP/03/19.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Radhwan, S. Sharif or Z. Shayfull.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radhwan, H., Sharif, S., Shayfull, Z. et al. Thermal-Transient Analysis for Cooling Time on New Formulation of Metal Epoxy Composite (MEC) as Mold Inserts. Arab J Sci Eng 46, 7483–7494 (2021). https://doi.org/10.1007/s13369-021-05449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05449-2

Keywords

Navigation