Skip to main content
Log in

An Exact Elasticity Solution for Monoclinic Functionally Graded Beams

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, an elasticity solution is presented for monoclinic functionally graded beams subject to a transverse pressure distributed sinusoidally. Monoclinic material properties are assumed to vary exponentially throughout the thickness of the beam’s layers. An analytical formulation based on the classical Euler–Bernoulli beam theory is also derived for comparison purposes of simply supported monoclinic functionally graded beams. In benchmark examples, the numerical results of normal stresses, transverse shear stress, as well as axial and vertical displacements are presented. The effect of material grading, fiber angle, and beam length to thickness ratio on the stress and displacement distributions is comprehensively investigated. The proposed elasticity-based analytical solution and presented numerical results can be used for verification or comparison purposes of numerical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mahamood, R.M.; Akinlabi, E.T.: Functionally Graded Materials. Springer International Publishing, Cham (2017)

    Google Scholar 

  2. Dorduncu, M.: Stress analysis of sandwich plates with functionally graded cores using peridynamic differential operator and refined zigzag theory. Thin-Walled Structures (2020). https://doi.org/10.1016/j.tws.2019.106468

    Article  Google Scholar 

  3. Hamdia, K.M.; Msekh, M.A.; Silani, M.; Vu-Bac, N.; Zhuang, X.; Nguyen-Thoi, T.; Rabczuk, T.: Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Compos. Struct. 133, 1177–1190 (2015). https://doi.org/10.1016/j.compstruct.2015.08.051

    Article  Google Scholar 

  4. Khudari Bek, Y.; Hamdia, K.M.; Rabczuk, T.; Könke, C.: Micromechanical model for polymeric nano-composites material based on SBFEM. Compos. Struct. 194, 516–526 (2018). https://doi.org/10.1016/j.compstruct.2018.03.064

    Article  Google Scholar 

  5. Kutlu, A.; Meschke, G.; Omurtag, M.H.: A new mixed finite-element approach for the elastoplastic analysis of Mindlin plates. J. Eng. Math. 99, 137–155 (2016). https://doi.org/10.1007/s10665-015-9825-7

    Article  MathSciNet  MATH  Google Scholar 

  6. Kutlu, A.; Omurtag, M.H.: Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method. Int. J. Mech. Sci. 65, 64–74 (2012). https://doi.org/10.1016/j.ijmecsci.2012.09.004

    Article  Google Scholar 

  7. Aribas, U.N.; Ermis, M.; Eratli, N.; Omurtag, M.H.: The static and dynamic analyses of warping included composite exact conical helix by mixed FEM. Compos. B Eng. 160, 285–297 (2019). https://doi.org/10.1016/j.compositesb.2018.10.018

    Article  Google Scholar 

  8. Kutlu, A.; Uğurlu, B.; Omurtag, M.H.: A combined boundary-finite element procedure for dynamic analysis of plates with fluid and foundation interaction considering free surface effect. Ocean Eng. 145, 34–43 (2017). https://doi.org/10.1016/j.oceaneng.2017.08.052

    Article  Google Scholar 

  9. Zenkour, A.M.: Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate. Arch. Appl. Mech. 77, 197–214 (2007)

    MATH  Google Scholar 

  10. Li, X.Y.; Ding, H.J.; Chen, W.Q.: Elasticity solutions for a transversely isotropic functionally graded circular plate subject to an axisymmetric transverse load qrk. Int. J. Solids Struct. 45, 191–210 (2008)

    MATH  Google Scholar 

  11. Huang, Z.Y.; Lü, C.F.; Chen, W.Q.: Benchmark solutions for functionally graded thick plates resting on Winkler–Pasternak elastic foundations. Compos. Struct. 85, 95–104 (2008)

    Google Scholar 

  12. Lü, C.F.; Lim, C.W.; Chen, W.Q.: Semi-analytical analysis for multi-directional functionally graded plates: 3-D elasticity solutions. Int. J. Numer. Methods Eng. 79, 25–44 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Kashtalyan, M.; Menshykova, M.: Three-dimensional elasticity solution for sandwich panels with a functionally graded core. Compos. Struct. 87, 36–43 (2009)

    Google Scholar 

  14. Xu, Y.; Zhou, D.: Three-dimensional elasticity solution of functionally graded rectangular plates with variable thickness. Compos. Struct. 91, 56–65 (2009)

    Google Scholar 

  15. Asghari, M.; Ghafoori, E.: A three-dimensional elasticity solution for functionally graded rotating disks. Compos. Struct. 92, 1092–1099 (2010)

    Google Scholar 

  16. Vel, S.S.: Exact elasticity solution for the vibration of functionally graded anisotropic cylindrical shells. Compos. Struct. 92, 2712–2727 (2010)

    Google Scholar 

  17. Woodward, B.; Kashtalyan, M.: Three-dimensional elasticity solution for bending of transversely isotropic functionally graded plates. Eur. J. Mech.-A/Solids. 30, 705–718 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Yang, B.; Ding, H.J.; Chen, W.Q.: Elasticity solutions for functionally graded rectangular plates with two opposite edges simply supported. Appl. Math. Model. 36, 488–503 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Hosseini-Hashemi, Sh.; Salehipour, H.; Atashipour, S.R.; Sburlati, R.: On the exact in-plane and out-of-plane free vibration analysis of thick functionally graded rectangular plates: Explicit 3-D elasticity solutions. Compos. Part B: Eng. 46, 108–115 (2013)

    Google Scholar 

  20. Sankar, B.V.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61, 689–696 (2001)

    Google Scholar 

  21. Venkataraman, S.; Sankar, B.V.: Elasticity solution for stresses in a sandwich beam with functionally graded core. AIAA J. 41, 2501–2505 (2003)

    Google Scholar 

  22. Ding, H.J.; Huang, D.J.; Chen, W.Q.: Elasticity solutions for plane anisotropic functionally graded beams. Int. J. Solids Struct. 44, 176–196 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Lü, C.F.; Chen, W.Q.; Xu, R.Q.; Lim, C.W.: Semi-analytical elasticity solutions for bi-directional functionally graded beams. Int. J. Solids Struct. 45, 258–275 (2008)

    MATH  Google Scholar 

  24. Ying, J.; Lü, C.F.; Chen, W.Q.: Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Compos. Struct. 84, 209–219 (2008)

    Google Scholar 

  25. Wang, M.; Liu, Y.: Elasticity solutions for orthotropic functionally graded curved beams. Eur. J. Mech.-A/Solids. 37, 8–16 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Nie, G.J.; Zhong, Z.; Chen, S.: Analytical solution for a functionally graded beam with arbitrary graded material properties. Compos. Part B: Eng. 44, 274–282 (2013)

    Google Scholar 

  27. Daouadji, T.H.; Henni, A.H.; Tounsi, A.; El Abbes, A.B.: Elasticity solution of a cantilever functionally graded beam. Appl. Compos. Mater. 20, 1–15 (2013)

    Google Scholar 

  28. Xu, Y.; Yu, T.; Zhou, D.: Two-dimensional elasticity solution for bending of functionally graded beams with variable thickness. Meccanica 49, 2479–2489 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Alibeigloo, A.: Three-dimensional thermo-elasticity solution of sandwich cylindrical panel with functionally graded core. Compos. Struct. 107, 458–468 (2014)

    Google Scholar 

  30. Alibeigloo, A.; Liew, K.M.: Free vibration analysis of sandwich cylindrical panel with functionally graded core using three-dimensional theory of elasticity. Compos. Struct. 113, 23–30 (2014)

    Google Scholar 

  31. Arefi, M.: Elastic solution of a curved beam made of functionally graded materials with different cross sections. Steel Compos. Struct. 18, 659–672 (2015)

    Google Scholar 

  32. Zafarmand, H.; Kadkhodayan, M.: Three dimensional elasticity solution for static and dynamic analysis of multi-directional functionally graded thick sector plates with general boundary conditions. Compos. Part B: Eng. 69, 592–602 (2015)

    Google Scholar 

  33. Chu, P.; Li, X.-F.; Wu, J.-X.; Lee, K.Y.: Two-dimensional elasticity solution of elastic strips and beams made of functionally graded materials under tension and bending. Acta Mech. 226, 2235–2253 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Demirbas, M.D.: Thermal stress analysis of functionally graded plates with temperature-dependent material properties using theory of elasticity. Compos. Part B: Eng. 131, 100–124 (2017)

    Google Scholar 

  35. Benguediab, S.; Tounsi, A.; Abdelaziz, H.H.; Meziane, M.A.A.: Elasticity solution for a cantilever beam with exponentially varying properties. J. Appl. Mech. Tech. Phys. 58, 354–361 (2017)

    MathSciNet  MATH  Google Scholar 

  36. He, X.-T.; Li, W.-M.; Sun, J.-Y.; Wang, Z.-X.: An elasticity solution of functionally graded beams with different moduli in tension and compression. Mech. Adv. Mater. Struct. 25, 143–154 (2018)

    Google Scholar 

  37. Bhaskar, K.; Ravindran, A.: Elasticity solution for orthotropic FGM plates with dissimilar stiffness coefficient variations. Acta Mech. 230, 979–992 (2019)

    MathSciNet  MATH  Google Scholar 

  38. Yang, Z.; Wu, P.; Liu, W.: Time-dependent behavior of laminated functionally graded beams bonded by viscoelastic interlayer based on the elasticity theory. Arch Appl Mech. 90, 1457–1473 (2020)

    Google Scholar 

  39. Wu, P.; Yang, Z.; Huang, X.; Liu, W.; Fang, H.: Exact solutions for multilayer functionally graded beams bonded by viscoelastic interlayer considering memory effect. Compos. Struct. 249, 112492 (2020)

    Google Scholar 

  40. Li, Z.; Xu, Y.; Huang, D.; Zhao, Y.: Two-dimensional elasticity solution for free vibration of simple-supported beams with arbitrarily and continuously varying thickness. Arch. Appl. Mech. 90, 275–289 (2020)

    Google Scholar 

  41. Ravindran, A.; Bhaskar, K.: Elasticity solution for a sandwich plate having composite facesheets with in-plane grading. J. Sandwich Struct. Mater. 1, 1099636220909810 (2020)

    Google Scholar 

  42. Huang, Y.; Ouyang, Z.-Y.: Exact solution for bending analysis of two-directional functionally graded Timoshenko beams. Arch. Appl. Mech. 90, 1005–1023 (2020)

    Google Scholar 

  43. Chang, S.-H.; Parinov, I.A.; Topolov, VYu. (eds.): Advanced Materials: Physics. Mechanics and Applications. Springer International Publishing, Cham (2014)

    Google Scholar 

  44. Alam, M.; Mishra, S.K.: Thermo-mechanical post-critical analysis of nonlocal orthotropic plates. Appl. Math. Model. 79, 106–125 (2020). https://doi.org/10.1016/j.apm.2019.10.018

    Article  MathSciNet  MATH  Google Scholar 

  45. Alam, M.; Mishra, S.K.: Nonlinear vibration of nonlocal strain gradient functionally graded beam on nonlinear compliant substrate. Compos. Struct. (2020). https://doi.org/10.1016/j.compstruct.2020.113447

    Article  Google Scholar 

  46. Alam, M.; Mishra, S.K.; Kant, T.: Scale dependent critical external pressure for buckling of spherical shell based on nonlocal strain gradient theory. Int. J. Struct. Stabil. Dyn. (2020). https://doi.org/10.1142/S0219455421500036

    Article  Google Scholar 

  47. Zhang, P.; Qing, H.; Gao, C.-F.: Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos. Struct. 245, 112362 (2020)

    Google Scholar 

  48. Zhang, P.; Qing, H.; Gao, C.-F.: Analytical solutions of static bending of curved Timoshenko microbeams using Eringen’s two-phase local/nonlocal integral model. ZAMM-J. Appl. Math. Mech. 100, e201900207 (2020)

    MathSciNet  Google Scholar 

  49. Tovstik, P.E.; Tovstik, T.P.: Two-dimensional model of a plate made of an anisotropic inhomogeneous material. Mech. Solids 52, 144–154 (2017). https://doi.org/10.3103/S0025654417020042

    Article  MATH  Google Scholar 

  50. Morozov, N.F.; Belyaev, A.K.; Tovstik, P.E.; Tovstik, T.P.: Two-dimensional equations of second order accuracy for a multilayered plate with orthotropic layers. Dokl. Phys. 63, 471–475 (2018). https://doi.org/10.1134/S1028335818110034

    Article  Google Scholar 

  51. Schneider, P.; Kienzler, R.: A Reissner-type plate theory for monoclinic material derived by extending the uniform-approximation technique by orthogonal tensor decompositions of nth-order gradients. Meccanica 52, 2143–2167 (2017). https://doi.org/10.1007/s11012-016-0573-1

    Article  MathSciNet  MATH  Google Scholar 

  52. Belyaev, A.K.; Morozov, N.F.; Tovstik, P.E.; Tovstik, T.P.; Zelinskaya, A.V.: Two-Dimensional Model of a Plate, Made of Material with the General Anisotropy. In: Altenbach, H.; Chróścielewski, J.; Eremeyev, V.A.; Wiśniewski, K. (Eds.) Recent Developments in the Theory of Shells, pp. 91–108. Springer International Publishing, Cham (2019)

    MATH  Google Scholar 

  53. Çömez, İ; Yilmaz, K.B.: Mechanics of frictional contact for an arbitrary oriented orthotropic material. ZAMM-J. Appl. Math. Mech. 99, e201800084 (2019)

    MathSciNet  Google Scholar 

  54. Yilmaz, K.B.; Çömez, İ; Güler, M.A.; Yildirim, B.: Sliding frictional contact analysis of a monoclinic coating/isotropic substrate system. Mech. Mater. 137, 103132 (2019)

    Google Scholar 

  55. Çömez, İ: Contact mechanics of the functionally graded monoclinic layer. Eur. J. Mech.-A/Solids. 83, 104018 (2020)

    MathSciNet  MATH  Google Scholar 

  56. Binienda, W.K.; Pindera, M.-J.: Frictionless contact of layered metal-matrix and polymer-matrix composite half planes. Compos. Sci. Technol. 50, 119–128 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akif Kutlu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Appendices

Appendix A: Details of some expressions

Expressions of \(m_{j}\), \(k_{j}\) and \(L_{j}\) appearing in Eqs. (12) and (13) are given below

$$ m_{j} = - \frac{{\overline{C}_{55}^{0} (k_{j} + n_{j} )\beta + (\overline{C}_{13}^{0} - \overline{C}_{33}^{0} k_{j} n_{j} )(n_{j} \beta + \gamma )}}{{\overline{C}_{45}^{0} n_{j} \beta + \overline{C}_{36}^{0} (n_{j} \beta + \gamma )}} $$
(A1)
$$ \begin{aligned} k_{j} & = \left[ {\overline{C}_{16}^{0} \beta ((\overline{C}_{36}^{0} + \overline{C}_{45}^{0} )n_{j} \beta + \overline{C}_{36}^{0} \gamma ) + \overline{C}_{13}^{0} (n_{j} \beta + \gamma )( - \overline{C}_{66}^{0} \beta + \overline{C}_{44}^{0} n_{j} (n_{j} \beta + \gamma ))} \right. \\ & \quad + \left. {n_{j} ( - \overline{C}_{45}^{0} (n_{j} \beta + \gamma )((\overline{C}_{36}^{0} + \overline{C}_{45}^{0} )n_{j} \beta + \overline{C}_{36}^{0} \gamma ) + \overline{C}_{55}^{0} \xi ( - \overline{C}_{66}^{0} \beta + \overline{C}_{44}^{0} n_{j} (n_{j} \beta + \gamma )))} \right]/ \\ & \quad \left[ {((\overline{C}_{36}^{0} + \overline{C}_{45}^{0} )^{2} n_{j}^{2} + (\overline{C}_{55}^{0} - \overline{C}_{33}^{0} n_{j}^{2} )(\overline{C}_{66}^{0} - \overline{C}_{44}^{0} n_{j}^{2} ))\beta^{2} + n_{j} ((\overline{C}_{36}^{0} + \overline{C}_{45}^{0} )^{2} - \overline{C}_{44}^{0} \overline{C}_{45}^{0} - \overline{C}_{33}^{0} \overline{C}_{66}^{0} + } \right. \\ & \quad + \left. {2\overline{C}_{33}^{0} \overline{C}_{44}^{0} n_{j}^{2} )\beta \gamma + (\overline{C}_{36}^{0} \overline{C}_{45}^{0} + \overline{C}_{33}^{0} \overline{C}_{44}^{0} n_{j}^{2} )\gamma^{2} } \right] \\ \end{aligned} $$
(A2)
$$ L_{1} = 3\gamma /\beta $$
(A3)
$$ \begin{aligned} L_{2} & = (\beta^{3} \left[ { - (\overline{C}_{13}^{0} )^{2} \overline{C}_{44}^{0} + \overline{C}_{11}^{0} \overline{C}_{33}^{0} \overline{C}_{44}^{0} - 2\overline{C}_{16}^{0} \overline{C}_{33}^{0} \overline{C}_{45}^{0} - (\overline{C}_{36}^{0} )^{2} \overline{C}_{55}^{0} + 2\overline{C}_{13}^{0} (\overline{C}_{36}^{0} \overline{C}_{45}^{0} + (\overline{C}_{45}^{0} )^{2} } \right. - \\ & \quad \left. {\overline{C}_{44}^{0} \overline{C}_{55}^{0} ) + \overline{C}_{33}^{0} \overline{C}_{55}^{0} \overline{C}_{66}^{0} } \right] + \gamma^{2} \beta \left[ {3\overline{C}_{33}^{0} + (\overline{C}_{45}^{0} )^{2} - 3\overline{C}_{33}^{0} \overline{C}_{44}^{0} \overline{C}_{55}^{0} } \right])/\left( {\beta^{3} \overline{C}_{33}^{0} \left[ {(\overline{C}_{45}^{0} )^{2} - \overline{C}_{44}^{0} \overline{C}_{55}^{0} } \right]} \right) \\ & \quad \left. {\overline{C}_{44}^{0} \overline{C}_{55}^{0} ) + \overline{C}_{33}^{0} \overline{C}_{55}^{0} \overline{C}_{66}^{0} } \right] + \gamma^{2} \beta \left[ {3\overline{C}_{33}^{0} + (\overline{C}_{45}^{0} )^{2} - 3\overline{C}_{33}^{0} \overline{C}_{44}^{0} \overline{C}_{55}^{0} } \right])/\left( {\beta^{3} \overline{C}_{33}^{0} \left[ {(\overline{C}_{45}^{0} )^{2} - \overline{C}_{44}^{0} \overline{C}_{55}^{0} } \right]} \right) \\ \end{aligned} $$
(A4)
$$ \begin{aligned} L_{3} & = (2\beta^{2} \gamma \left[ { - (\overline{C}_{13}^{0} )^{2} \overline{C}_{44}^{0} + \overline{C}_{11}^{0} \overline{C}_{33}^{0} \overline{C}_{44}^{0} - 2\overline{C}_{16}^{0} \overline{C}_{33}^{0} \overline{C}_{45}^{0} - } \right.(\overline{C}_{36}^{0} )^{2} \overline{C}_{55}^{0} + 2\overline{C}_{13}^{0} (\overline{C}_{36}^{0} \overline{C}_{45}^{0} + (\overline{C}_{45}^{0} )^{2} \\ & \quad - \left. {\overline{C}_{44}^{0} \overline{C}_{55}^{0} ) + \overline{C}_{33}^{0} \overline{C}_{55}^{0} \overline{C}_{66}^{0} } \right] + \gamma^{3} \overline{C}_{33}^{0} \left[ {(\overline{C}_{45}^{0} )^{2} - \overline{C}_{44}^{0} \overline{C}_{55}^{0} } \right])/\left( {\beta^{3} \overline{C}_{33}^{0} \left[ {(\overline{C}_{45}^{0} )^{2} - \overline{C}_{44}^{0} \overline{C}_{55}^{0} } \right]} \right) \\ \end{aligned} $$
(A5)
$$ \begin{aligned} L_{4} & = (\beta^{3} \left[ {(\overline{C}_{16}^{0} )^{2} \overline{C}_{33}^{0} } \right. - 2\overline{C}_{16}^{0} (\overline{C}_{13}^{0} (\overline{C}_{36}^{0} + \overline{C}_{45}^{0} ) + \overline{C}_{36}^{0} \overline{C}_{55}^{0} ) + \overline{C}_{13}^{0} (\overline{C}_{13}^{0} + 2\overline{C}_{55}^{0} )\overline{C}_{66}^{0} + \overline{C}_{11}^{0} ((\overline{C}_{36}^{0} )^{2} + \\ & \quad \left. { + 2\overline{C}_{36}^{0} \overline{C}_{45}^{0} + (\overline{C}_{45}^{0} )^{2} - \overline{C}_{44}^{0} \overline{C}_{55}^{0} - \overline{C}_{33}^{0} \overline{C}_{66}^{0} )} \right] + \gamma^{2} \beta \left[ { - (\overline{C}_{13}^{0} )^{2} } \right.\overline{C}_{44}^{0} + \overline{C}_{11}^{0} \overline{C}_{33}^{0} \overline{C}_{44}^{0} - 2\overline{C}_{16}^{0} \overline{C}_{33}^{0} \overline{C}_{45}^{0} \\ & \quad - \left. {(\overline{C}_{36}^{0} )^{2} \overline{C}_{55}^{0} + \overline{C}_{13}^{0} (2\overline{C}_{36}^{0} \overline{C}_{45}^{0} + 3(\overline{C}_{45}^{0} )^{2} - 3\overline{C}_{44}^{0} \overline{C}_{55}^{0} ) + \overline{C}_{33}^{0} \overline{C}_{55}^{0} \overline{C}_{66}^{0} } \right])/\left( {\beta^{3} \overline{C}_{33}^{0} \left[ {(\overline{C}_{45}^{0} )^{2} - \overline{C}_{44}^{0} \overline{C}_{55}^{0} } \right]} \right) \\ \end{aligned} $$
(A6)
$$ \begin{aligned} L_{5} & = (\gamma \beta^{2} \left[ {(\overline{C}_{16}^{0} )^{2} \overline{C}_{33}^{0} } \right. - 2\overline{C}_{16}^{0} (\overline{C}_{13}^{0} (\overline{C}_{36}^{0} + \overline{C}_{45}^{0} ) + \overline{C}_{36}^{0} \overline{C}_{55}^{0} ) + \overline{C}_{13}^{0} (\overline{C}_{13}^{0} + 2\overline{C}_{55}^{0} )\overline{C}_{66}^{0} + \overline{C}_{11}^{0} ((\overline{C}_{36}^{0} \\ & \quad + \left. {\overline{C}_{45}^{0} )^{2} - \overline{C}_{44}^{0} \overline{C}_{55}^{0} - \overline{C}_{33}^{0} \overline{C}_{66}^{0} )} \right] + \gamma^{3} \overline{C}_{13}^{0} \left[ {(\overline{C}_{45}^{0} )^{2} - \overline{C}_{44}^{0} \overline{C}_{55}^{0} } \right])/\left( {\beta^{3} \overline{C}_{33}^{0} \left[ {(\overline{C}_{45}^{0} )^{2} - \overline{C}_{44}^{0} \overline{C}_{55}^{0} } \right]} \right) \\ \end{aligned} $$
(A7)
$$ L_{6} = \beta^{3} \left[ { - (\overline{C}_{16}^{0} )^{2} + \overline{C}_{11}^{0} \overline{C}_{16}^{0} } \right] + \gamma^{2} \beta \left[ { - \overline{C}_{13}^{0} \overline{C}_{16}^{0} \overline{C}_{45}^{0} + \overline{C}_{11}^{0} \overline{C}_{36}^{0} \overline{C}_{45}^{0} - \overline{C}_{16}^{0} \overline{C}_{36}^{0} \overline{C}_{55}^{0} + \overline{C}_{13}^{0} \overline{C}_{55}^{0} \overline{C}_{66}^{0} } \right] $$
(A8)

Appendix B: Figures of displacement components along the beam axis

See Figs. 13 and 14

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çömez, İ., Aribas, U.N., Kutlu, A. et al. An Exact Elasticity Solution for Monoclinic Functionally Graded Beams. Arab J Sci Eng 46, 5135–5155 (2021). https://doi.org/10.1007/s13369-021-05434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05434-9

Keywords

Navigation