Skip to main content
Log in

Impacts of Maltene on the Wettability and Adhesion Properties of Rejuvenated Asphalt Binder

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, the use of reclaimed asphalt pavement (RAP) has gained much attention and is widely accepted. However, the rejuvenating agents which are usually used to reduce the rigidity of the aged asphalt are subjected to diverse climate circumstances. The present work used maltene as a rejuvenator to investigate several measurements regarding stripping failure. The evaluation of wettability and work of adhesion (WA) was assessed using the sessile drop method. Meanwhile, asphalt and asphalt-water aggregate systems were tested for acid and water resistance using chemical and water immersion tests. Next, atomic force microscopy (AFM) was used to evaluate the changes in the microstructures of the asphalt binders. The experimental results revealed that the ideal percentages of maltene which should be added to 30% and 50% aged asphalt were 8% and 16%, respectively. Meanwhile, the wettability, WA and resistance to stripping differed depending on the percentage of aged asphalt in the blend. However, the inclusion of maltene has improved samples containing high percentages of aged asphalt. On the other hand, the resistance to boiling water containing acid decreased slightly with the addition of maltene. Nevertheless, all the rejuvenated samples exhibited better results than virgin asphalt. Moreover, the AFM results were in line with the observations, suggesting the suitability of maltene for the functional application of pavement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ghabchi, R.; Singh, D.; Zaman, M.: Evaluation of moisture susceptibility of asphalt mixes containing RAP and different types of aggregates and asphalt binders using the surface free energy method. Constr. Build. Mater. 73, 479–489 (2014)

    Article  Google Scholar 

  2. Al Saffar, Z.H.; Yaacob, H.; Idham, M.K.; Saleem, M.K.; LAI, J.C.; Putra Jaya, R.: A review on rejuvenating materials used with reclaimed hot mix asphalt. Can. J. Civ. Eng. ja) (2020).

  3. Hussein, Z.; Yaacob, H.; Idham, M.; Abdulrahman, S.; Choy, L.; Jaya, R.: Rejuvenation of hot mix asphalt incorporating high RAP content: issues to consider. In: IOP Conference Series: Earth and Environmental Science 2020, vol. 1, p. 012009. IOP Publishing

  4. Hussein, Z.; Yaacob, H.; Idham, M.; Hassan, N.; Choy, L.; Jaya, R.: Restoration of aged bitumen properties using maltenes. In: IOP Conference Series: Materials Science and Engineering 2020, vol. 1, p. 012014. IOP Publishing

  5. Varveri, A., Zhu, J., Kringos, N.: 1Delft University of Technology, Delft, The Netherlands; 2KTH Royal Institute of Technology, Stockholm, Sweden. Advances in Asphalt Materials: Road and Pavement Construction, 303 (2015).

  6. Hossain, K.; Karakas, A.; Hossain, Z.: Effects of aging and rejuvenation on surface-free energy measurements and adhesion of asphalt mixtures. J. Mater. Civ. Eng. 31(7), 04019125 (2019)

    Article  Google Scholar 

  7. Boulangé, L.; Bonin, E.; Saubot, M.: Physicochemical characterisations of the bitumen–aggregate interface to get a better understanding of stripping phenomena. Road Mater. Pavement Des. 14(2), 384–403 (2013)

    Article  Google Scholar 

  8. Miknis, F.; Pauli, A.; Beemer, A.; Wilde, B.: Use of NMR imaging to measure interfacial properties of asphalts. Fuel 84(9), 1041–1051 (2005)

    Article  Google Scholar 

  9. Tan, Y.; Guo, M.: Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Constr. Build. Mater. 47, 254–260 (2013)

    Article  Google Scholar 

  10. Cui, S.; Blackman, B.R.; Kinloch, A.J.; Taylor, A.C.: Durability of asphalt mixtures: effect of aggregate type and adhesion promoters. Int. J. Adhes. Adhes. 54, 100–111 (2014)

    Article  Google Scholar 

  11. Ji, X.; Li, J.; Zou, H.; Hou, Y.; Chen, B.; Jiang, Y.: Multi scale investigation on the failure mechanism of adhesion between asphalt and aggregate caused by aging. Constr. Build. Mater. 265, 120361 (2020)

    Article  Google Scholar 

  12. Little, D.N.; Allen, D.H.; Bhasin, A.: Chemical and mechanical processes influencing adhesion and moisture damage in hot mix asphalt pavements. In: Modeling and Design of Flexible Pavements and Materials, pp. 123–186. Springer, Cham (2018)

  13. Ji, X.; Hou, Y.; Zou, H.; Chen, B.; Jiang, Y.: Study of surface microscopic properties of asphalt based on atomic force microscopy. Constr. Build. Mater. 242, 118025 (2020)

    Article  Google Scholar 

  14. Rahmad, S.; Yusoff, N.I.M.; Rosyidi, S.A.P.; Badri, K.H.; Widyatmoko, I.: Effects of Rediset on the adhesion, stripping, thermal and surface morphologies of PG76 binder. Constr. Build. Mater. 241, 117923 (2020)

    Article  Google Scholar 

  15. Ji, J.; Yao, H.; Liu, L.; Suo, Z.; Zhai, P.; Yang, X.; You, Z.: Adhesion evaluation of asphalt-aggregate interface using surface free energy method. Appl. Sci. 7(2), 156 (2017)

    Article  Google Scholar 

  16. Zhang, F.; Muhammad, Y.; Liu, Y.; Han, M.; Yin, Y.; Hou, D.; Li, J.: Measurement of water resistance of asphalt based on surface free energy analysis using stripping work between asphalt-aggregate system. Constr. Build. Mater. 176, 422–431 (2018)

    Article  Google Scholar 

  17. Tabar, M.A.; Ghazanfari, M.H.; Monfared, A.D.: On the size-dependent behavior of drop contact angle in wettability alteration of reservoir rocks to preferentially gas wetting using nanofluid. J. Petrol. Sci. Eng. 178, 1143–1154 (2019)

    Article  Google Scholar 

  18. Sadeghinezhad, E.; Siddiqui, M.A.Q.; Roshan, H.; Regenauer-Lieb, K.: On the interpretation of contact angle for geomaterial wettability: contact area versus three-phase contact line. J. Petrol. Sci. Eng. 195, 107579 (2020)

    Article  Google Scholar 

  19. Kang, X.; Sun, H.-M.; Yang, W.; Chen, R.-P.: Wettability of clay aggregates—A coarse-grained molecular dynamic study. Appl. Surf. Sci. 532, 147423 (2020)

    Article  Google Scholar 

  20. Han, S.; Dong, S.; Liu, M.; Han, X.; Liu, Y.: Study on improvement of asphalt adhesion by hydrated lime based on surface free energy method. Constr. Build. Mater. 227, 116794 (2019)

    Article  Google Scholar 

  21. Yao, H.; Dai, Q.; You, Z.: Chemo-physical analysis and molecular dynamics (MD) simulation of moisture susceptibility of nano hydrated lime modified asphalt mixtures. Constr. Build. Mater. 101, 536–547 (2015)

    Article  Google Scholar 

  22. Kamaruddin, M.; Hidayah, N.; Hainin, M.R.; Abdul Hassan, N.; Abdullah, M.E.: Effect of chemical warm asphalt additive on wettability of aged binder incorporating waste engine oil. Int. J. Appl. Eng. Res. 10(10), 26139–26147 (2015)

    Google Scholar 

  23. Cao, Z.; Huang, X.; Yu, J.; Han, X.; Wang, R.; Li, Y.: Laboratory evaluation of the effect of rejuvenators on the interface performance of rejuvenated SBS modified bitumen mixture by surface free energy method. Constr. Build. Mater. 271, 121866 (2021)

  24. Zhang, J.; Sun, C.; Li, P.; Jiang, H.; Liang, M.; Yao, Z.; Zhang, X.; Airey, G.: Effect of different viscous rejuvenators on chemical and mechanical behavior of aged and recovered bitumen from RAP. Constr. Build. Mater. 239, 117755 (2020)

    Article  Google Scholar 

  25. ASTM: Standard Test Methods for Quantitative Extraction of Asphalt Binder from Asphalt Mixtures. In: D2172 / D2172M. (2017)

  26. ASTM: Standard practice for recovery of asphalt from solution using the rotary evaporator. In: D5404 / D5404M. (2012)

  27. ASTM D4124, Standard Test Method for Separation of Asphalt into Four Fractions. In. PA: ASTM International, West Conshohocken, (2009)

  28. Tran, N.; Xie, Z.; Julian, G.; Taylor, A.; Willis, R.; Robbins, M.; Buchanan, S.: Effect of a recycling agent on the performance of high-RAP and high-RAS mixtures: field and lab experiments. J. Mater. Civ. Eng. 29(1), 04016178 (2017)

    Article  Google Scholar 

  29. Ziari, H.; Moniri, A.; Bahri, P.; Saghafi, Y.: The effect of rejuvenators on the aging resistance of recycled asphalt mixtures. Constr. Build. Mater. 224, 89–98 (2019)

    Article  Google Scholar 

  30. Pradyumna, T.A.; Mittal, A.; Jain, P.: Characterization of reclaimed asphalt pavement (RAP) for use in bituminous road construction. Proc. Soc. Behav. Sci. 104, 1149–1157 (2013)

    Article  Google Scholar 

  31. Yao, H.; Dai, Q.; You, Z.; Zhang, J.; Lv, S.; Xiao, X.: Evaluation of contact angle between asphalt binders and aggregates using Molecular Dynamics (MD) method. Constr. Build. Mater. 212, 727–736 (2019)

    Article  Google Scholar 

  32. Little, D.N.; Bhasin, A.: Using surface energy measurements to select materials for asphalt pavement. Transp. Res. Board 2001(1), 37–45 (2007). https://doi.org/10.3141/2001-05

    Article  Google Scholar 

  33. Simpson, J.T.; Hunter, S.R.; Aytug, T.: Superhydrophobic materials and coatings: a review. Rep. Prog. Phys. 78(8), 086501 (2015)

    Article  Google Scholar 

  34. Zakerzadeh, M.; Abtahi, S.M.; Allafchian, A.; Chamani, M.R.: Examining the effect of different super hydrophobic nanomaterials on asphalt pavements. Constr. Build. Mater. 180, 285–290 (2018)

    Article  Google Scholar 

  35. AASHTO T 182, Standard method of test for coating and stripping of bitumen-aggregate mixtures. In: AASHTO Standards, Washongton D.C. (84 (2002))

  36. Jakarni, F.M.; Rosli, M.F.; Yusoff, N.L.M.; Aziz, M.M.A.: Muniandy, R.; Hassim, S.: An overview of moisture damage performance tests on asphalt mixtures. J. Technol. 78(7–2), 91-98 (2016)

  37. Liu, Y.; Apeagyei, A.; Ahmad, N.; Grenfell, J.; Airey, G.: Examination of moisture sensitivity of aggregate–bitumen bonding strength using loose asphalt mixture and physico-chemical surface energy property tests. Int. J. Pavement Eng. 15(7), 657–670 (2014)

    Article  Google Scholar 

  38. Laboratory, R.R.: Bituminous materials in road construction. England (1985)

  39. Wang, Z.; Ye, F.: Experimental investigation on aging characteristics of asphalt based on rheological properties. Constr. Build. Mater. 231, 117158 (2020)

    Article  Google Scholar 

  40. Wei, J.; Dong, F.; Li, Y.; Zhang, Y.: Relationship analysis between surface free energy and chemical composition of asphalt binder. Constr. Build. Mater. 71, 116–123 (2014)

    Article  Google Scholar 

  41. Habal, A.; Singh, D.: Moisture damage resistance of GTR-modified asphalt binders containing WMA additives using the surface free energy approach. J. Perform. Constr. Facil. 31(3), 04017006 (2017)

    Article  Google Scholar 

  42. Yang, H.; Pang, L.; Zou, Y.; Liu, Q.; Xie, J.: The effect of water solution erosion on rheological, cohesion and adhesion properties of asphalt. Constr. Build. Mater. 246, 118465 (2020)

    Article  Google Scholar 

  43. Luo, L.; Chu, L.; Fwa, T.: Molecular dynamics analysis of oxidative aging effects on thermodynamic and interfacial bonding properties of asphalt mixtures. Constr. Build. Mater. 269, 121299 (2021)

  44. Wang, W.; Chen, J.; Sun, Y.; Xu, B.; Li, J.; Liu, J.: Laboratory performance analysis of high percentage artificial RAP binder with WMA additives. Constr. Build. Mater. 147, 58–65 (2017)

    Article  Google Scholar 

  45. Devulapalli, L.; Kothandaraman, S.; Sarang, G.: Evaluation of rejuvenator’s effectiveness on the reclaimed asphalt pavement incorporated stone matrix asphalt mixtures. Constr. Build. Mater. 224, 909–919 (2019)

    Article  Google Scholar 

  46. Aguiar-Moya, J.P.; Salazar-Delgado, J.; Baldi-Sevilla, A.; Leiva-Villacorta, F.; Loria-Salazar, L.: Effect of aging on adhesion properties of asphalt mixtures with the use of bitumen bond strength and surface energy measurement tests. Transp. Res. Rec. 2505(1), 57–65 (2015)

    Article  Google Scholar 

  47. Al-Saffar, Z.H.; Yaacob, H.; Mohd Satar, M.K.I.; Putra Jaya, R.: The tailored traits of reclaimed asphalt pavement incorporating maltene: performance analyses. Int. J. Pavement Eng. (2020). https://doi.org/10.1080/10298436.2020.1824294

    Article  Google Scholar 

  48. Liu, X.; Zou, X.; Yang, X.; Zhang, Z.: Effect of material composition on antistripping performance of SBS modified asphalt mixture under dry and wet conditions. J. Adhes. Sci. Technol. 32(14), 1503–1516 (2018)

    Article  Google Scholar 

  49. Al-Saffar, Z.H.; Yaacob, H.; Mohd Satar, M.K.L.; Saleem, M.K.; Jaya, R.P.; Lai, C.J.; Shaffie, E.: Evaluating the chemical and rheological attributes of aged asphalt: synergistic effects of maltene and waste engine oil rejuvenators. Arab. J. Sci. Eng. (2020). https://doi.org/10.1007/s13369-020-04842-7

    Article  Google Scholar 

  50. Fischer, H.R.; Mookhoek, S.D.: A study of the influence of the microstructure of one type of bitumen grade on the performance as a binder. Constr. Build. Mater. 117, 1–7 (2016)

    Article  Google Scholar 

  51. Pauli, A.; Grimes, R.; Beemer, A.; Turner, T.; Branthaver, J.: Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy. Int. J. Pavement Eng. 12(4), 291–309 (2011)

    Article  Google Scholar 

  52. Pizzorno, B.; Dourado, E.; Moraes, M.D.; Simão, R.; Leite, L.: Segregation and crystallization of waxes on the surface of asphalt binders as observed by atomic force microscopy. Petrol. Sci. Technol. 32(22), 2738–2745 (2014)

    Article  Google Scholar 

  53. Aguiar-Moya, J.P.; Salazar-Delgado, J.; Bonilla-Mora, V.; Rodríguez-Castro, E.; Leiva-Villacorta, F.; Loría-Salazar, L.: Morphological analysis of bitumen phases using atomic force microscopy. Road Mater. Pavement Des. 16(sup 1), 138–152 (2015)

    Article  Google Scholar 

  54. Aguiar-Moya, J.P.; Salazar-Delgado, J.; García, A.; Baldi-Sevilla, A.; Bonilla-Mora, V.; Loría-Salazar, L.G.: Effect of ageing on micromechanical properties of bitumen by means of atomic force microscopy. Road Mater. Pavement Des. 18(sup 2), 203–215 (2017)

    Article  Google Scholar 

  55. Chen, A.; Liu, G.; Zhao, Y.; Li, J.; Pan, Y.; Zhou, J.: Research on the aging and rejuvenation mechanisms of asphalt using atomic force microscopy. Constr. Build. Mater. 167, 177–184 (2018)

    Article  Google Scholar 

  56. Lu, X.; Isacsson, U.: Effect of ageing on bitumen chemistry and rheology. Constr. Build. Mater. 16(1), 15–22 (2002)

    Article  Google Scholar 

  57. Gong, M.; Yang, J.; Zhang, J.; Zhu, H.; Tong, T.: Physical–chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue. Constr. Build. Mater. 105, 35–45 (2016)

    Article  Google Scholar 

Download references

Funding

This work was funded by the Universiti Teknologi Malaysia through the Fundamental Research Grant Scheme (Grant No. R.J130000.7851.5F019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haryati Yaacob.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Saffar, Z.H., Yaacob, H., Satar, M.K.I.M. et al. Impacts of Maltene on the Wettability and Adhesion Properties of Rejuvenated Asphalt Binder. Arab J Sci Eng 46, 10557–10568 (2021). https://doi.org/10.1007/s13369-021-05413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05413-0

Keywords

Navigation