Skip to main content

Advertisement

Log in

A Study on the Dewaxing Behavior of Carbon-Black-Modified LDPE–Paraffin Wax Composites for Investment Casting Applications

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Dewaxing is an intermediate step in investment casting which can determine the properties of final metallic product and is strongly dependent on the properties of pattern wax. Processing of pattern wax composites with the conventionally available heating processes is energy intensive and requires high processing time, thus resulting in the lower processing rate at larger scale. Use of microwave technology for the dewaxing study is highly attractive alternative owing to the advantage of energy-efficient processing. The processing time of pattern wax composite of paraffin wax, bitumen, polyethylene and EVA in microwaves oven as a function of susceptor has been investigated. Carbon black was used as microwave susceptor in wax composites at several weight percentages. The efficient processing and melting behavior of pattern wax composite utilizing microwave dewaxing, thanks to the creation of heat sensitive sites within the pattern wax composite by the susceptor material, were analyzed in this study. FTIR-ATR, rheometer, TGA, DSC, UTM, SEM and OM were used to study the behavior of the wax composite. With the increase in the susceptor (CB) loading from 0.15 to 0.75%, an increase in the thermal stability of 6.86% was observed as depicted by the increase in the on-set temperature of the specimens. 71.9% decrease in the melt flow time of pattern wax composite was observed with the incorporation of 1.5% of CB as compared to reference specimen which manifested an inverse relationship between susceptor loading and processing time in the presence of microwave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tas, S.; Inem, B.: Conversion of an Investment Casting Sprue Wax to a Pattern Wax by the Modification of its Properties. Mater. Des. 25, 499–505 (2004)

    Article  Google Scholar 

  2. Krupa, I.; Mikova, G.: Phase change materials based on low-density polyethylene / paraffin wax blends. Eur. Polym. J. 43, 4695–4705 (2007)

    Article  Google Scholar 

  3. Mykhailyk, V.; Korinchevska, T.; Vorobiev, L.; Dekusha, L.: Specific heat capacity and thermal conductivity of heat storage materials based on paraffin, brown-coal wax and polyethylene wax. Probl. Energ. Reg. 2, 38–46 (2014)

    Google Scholar 

  4. Akishino, J.K.; Cerqueira, D.P.; Silva, G.C.; Swinka-filho, V.; Munaro, M.: Morphological and thermal evaluation of blends of polyethylene wax and paraffin. Thermochim. Acta. 626, 9–12 (2016)

    Article  Google Scholar 

  5. Biernacki, R.; Haratym, R.; Bałkowiec, A.; Wawulska-Marek, P.; Matysiak, H.; Zdunek, J.; Kurzydłowski, K.J.: Evaluation of physical properties of wax mixtures obtained from recycling of patterns used in precision casting. Arch. Metall. Mater. 60, 345–349 (2015)

    Article  Google Scholar 

  6. Brum, F.J.B.; Amico, S.C.; Vedana, I.; Spim, J.A.: Microwave dewaxing applied to the investment casting process. J. Mater. Process. Technol. 209, 3166–3171 (2009)

    Article  Google Scholar 

  7. Haque, K.E.: Microwave energy for mineral treatment processes: a brief review. Int. J. Miner. Process. 57, 1–24 (1999)

    Article  Google Scholar 

  8. Wu, K.; Park, H.; Willert-porada, M.: Pyrolysis of polyurethane by microwave hybrid heating for the processing of NiCr foams. J. Mater. Process. Tech. 212, 1481–1487 (2012)

    Article  Google Scholar 

  9. Yarlagadda, P.K.D.V.; Chai, T.C.: An investigation into welding of engineering thermoplastics using focused microwave energy. J. Mater. Process. Technol. 74, 199–212 (1998)

    Article  Google Scholar 

  10. Kathirgamanathan, P.: Microwave welding of thermoplastics using inherently conducting polymers. Polymer (Guildf). 34, 3105–3106 (1993)

    Article  Google Scholar 

  11. Vafudan, V.K.; Varadan, V.V.: Microwave joining and repair of composite materials. Polym. Eng. Sci. 31, 470–486 (1991)

    Article  Google Scholar 

  12. Wise, R.; Froment, I.: Microwave welding of thermoplastics. J. Mater. Sci. 36, 5935–5954 (2001)

    Article  Google Scholar 

  13. Gill, Y.Q.; Irfan, M.S.; Khan, F.H.; Saeed, F.; Ehsan, H.; Shakoor, A.: Carbon black/nickel hybrid filler reinforced conductive polypropylene composites. Mater. Res. Express. 6, 1–9 (2019)

    Article  Google Scholar 

  14. Lei, K.F.; Ahsan, S.; Budraa, N.; Li, W.J.; Mai, J.D.: Microwave bonding of polymer-based substrates for potential encapsulated micro / nanofluidic device fabrication. Sens. Actuators A Phys. 114, 340–346 (2004)

    Article  Google Scholar 

  15. Clarke, J.; Harper, J.F.; Price, D.M.; Zhang, J.: Effect of carbon black grade on the microwave heating of high- density polyethylene. J. Appl. Polym. Sci. 31, 1–9 (2007)

    Google Scholar 

  16. Gill, Y.Q.; Jin, J.; Song, M.: Melt flow behavior of high density polyethylene nanocomposites with 1D, 2D and 3D nanofillers. Nanocomposites 1, 160–169 (2015)

    Article  Google Scholar 

  17. Yahaya, B.; Izman, S.; Idris, M.H.; Dambatta, M.S.: Effects of activated charcoal on physical and mechanical properties of microwave dewaxed investment casting moulds. J. Manuf. Sci. Technol. 13, 97–103 (2016)

    Article  Google Scholar 

  18. Wu, C.; Benatar, A.: Microwave welding of high density polyethylene using intrinsically conductive polyaniline. Polym. Eng. Sci. 37, 738–743 (1997)

    Article  Google Scholar 

  19. Adolfo, B. B.; Begoña, G.; Chris, H.; Thomas, B.; Peter, M. Selective heating applications for the processing of polymer-polymer materials. In: ECCM 2012 - Composites at Venice, Proceedings of the 15th European Conference on Composite Materials (2012)

  20. Bayerl, T.; Duhovic, M.; Mitschang, P.; Bhattacharyya, D.: The heating of polymer composites by electromagnetic induction: a review. Compos. Part A Appl. Sci. Manuf. 57, 27–40 (2014)

    Article  Google Scholar 

  21. Danko, G.A.; Silberglitt, R.; Colombo, P.; Pippel, E.; Woltersdorf, J.: Comparison of microwave hybrid and conventional heating of preceramic polymers to form silicon carbide and silicon oxycarbide ceramics. J. Am. Ceram. Soc. 83, 1617–1625 (2000)

    Article  Google Scholar 

  22. Ravindra, I.B.; Narendranath, S.; Srinath, M.S.: Optimization of parameters influencing tensile strength of inconel-625 welded joints developed through microwave hybrid heating. Mater. Today 5, 7659–7667 (2018)

    Google Scholar 

  23. Gill, Y.Q.; Sajid, M.; Ehsan, H.; Abid, U.: Effect of nano-susceptor material addition on the microwave sintering of polypropylene. Pak. J. Engg. Appl. Sci. 24, 88–96 (2019)

    Google Scholar 

  24. Jamroz, N.U.: Determination of vinyl acetate (VA) content of ethylene-vinyl acetate (EVA) copolymers in thick films by infrared spectroscopy. J. Chem. Soc. Pakistan. 25, 84–87 (2003)

    Google Scholar 

  25. Corrales, T.; Catalina, F.; Peinado, C.; Allen, N.S.; Fontan, E.: Photooxidative and thermal degradation of polyethylenes: interrelationship by chemiluminescence, thermal gravimetric analysis and FTIR data. J. Photochem. Photobiol. A Chem. 147, 213–224 (2002)

    Article  Google Scholar 

  26. Krupa, I.; Luyt, A.S.: Physical properties of blends of LLDPE and an oxidized paraffin wax. Polymer (Guildf). 42, 7285–7289 (2001)

    Article  Google Scholar 

  27. Hong, Y.: Encapsulated nanostructured phase change materials for thermal management (2011)

  28. Zhang, Z.; Zhang, N.; Peng, J.; Fang, X.; Gao, X.; Fang, Y.: Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material. Appl. Energy 91(1), 426–431 (2012)

    Article  Google Scholar 

  29. Neto, J.M.G.; Ferreira, G.F.L.; Ribeiro Santos Jr., J.; Cunha, H.N.; Dantas, I.F.; Bianchi, R.F.: Complex conductance of carnauba wax/polyaniline composites. Brazilian J. Phys. 33, 371–375 (2003)

    Article  Google Scholar 

  30. Mhike, W.; Focke, W.W.; Mofokeng, J.P.; Luyt, A.S.: Thermally conductive phase-change materials for energy storage based on low-density polyethylene, soft fischer-tropsch wax and graphite. Thermochim. Acta 527, 75–82 (2012)

    Article  Google Scholar 

  31. Yang, C.; Navarro, M.E.; Zhao, B.; Leng, G.; Xu, G.; Wang, L.; Jin, Y.; Ding, Y.: Thermal conductivity enhancement of recycled high density polyethylene as a storage media for latent heat thermal energy storage. Sol. Energy Mater. Sol. Cells 152, 103–110 (2016)

    Article  Google Scholar 

  32. Erliyanti, N.K.; Sangian, H.F.; Susianto, S.; Altway, A.: The preparation of fixed carbon derived from waste tyre using pyrolysis. St. Cerc. St. CICBIA 16, 343–352 (2015)

    Google Scholar 

  33. Brown, M. E.; Gallagher, P. K.: Handbook of Thermal Analysis and Calorimetry. Elsevier Science, Vol. 2, Chapter 3, pp. 113 (2003)

  34. Savetlana, S.; Zulhendri, I. S.; Saputra, F. A.: The effect of carbon black loading and structure on tensile property of natural rubber composite. In: IOP Conf. Series: Materials Science and Engineering, 223, 012009 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Qayyum Gill.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gill, Y.Q., Saeed, F., Shoukat, M.H. et al. A Study on the Dewaxing Behavior of Carbon-Black-Modified LDPE–Paraffin Wax Composites for Investment Casting Applications. Arab J Sci Eng 46, 6715–6725 (2021). https://doi.org/10.1007/s13369-021-05406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05406-z

Keywords

Navigation