Skip to main content

Advertisement

Log in

Advanced Relaying for DG-Penetrated Distribution System

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The proliferation of renewable-based distributed generators poses protection challenges for the overcurrent relays due to the intermittent nature and control schemes. Converters present in the AC side restrict the fault current up to two per unit. Therefore, the overcurrent relay present in the AC microgrid maloperates during the fault. The proposed technique is based on the corresponding sum of the current samples obtained after every half-cycle (Ts/2), computed for each phase, and utilized to derive an index to detect the fault. The index thus derived is robust to noises, load variations, and other transients in the system. However, the technique requires removing transients and other noises before comparing the threshold for fault detection, which is resolved using the fast Fourier transform (FFT). Further, the magnitude of decaying DC (as another index) present in the signal is calculated using the least square technique for detecting the three-phase fault. The proposed algorithm is tested on an IEEE 14-bus system and a Real-Time Digital Simulator microgrid model. The fault detection technique is accurate for different faults under different operating conditions like noise, CT saturation, sudden load change, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Telukunta, V.; Member, S.; Pradhan, J.; Member, S.; Agrawal, A.; Member, S.; Singh, M.; Member, S.; Srivani, S.G.: Protection challenges under bulk penetration of renewable energy resources in power systems. CSEE J. Power Energy Syst. 3, 365–379 (2017)

    Article  Google Scholar 

  2. Memon, A.A.; Kauhaniemi, K.: A critical review of AC Microgrid protection issues and available solutions. Electr. Power Syst. Res. 129, 23–31 (2015)

    Article  Google Scholar 

  3. El-Khattam, W.; Sidhu, T.S.: Resolving the impact of distributed renewable generation on directional overcurrent relay coordination: a case study. IET Renew. Power Gener. 3, 415–425 (2009)

    Article  Google Scholar 

  4. Coster, E.; Myrzik, J.; Kling, W.: Effect of DG on Distribution Grid Protection. Distrib, Gener (2010)

    Book  Google Scholar 

  5. Hooshyar, A.; Iravani, R.: Microgrid protection. Proc. IEEE. 105, 1332–1353 (2017)

    Article  Google Scholar 

  6. Conti, S.: Analysis of distribution network protection issues in presence of dispersed generation. Electr. Power Syst. Res. 79, 49–56 (2009)

    Article  Google Scholar 

  7. El-Khattam, W.; Sidhu, T.S.: Restoration of directional overcurrent relay coordination in distributed generation systems utilizing fault current limiter. IEEE Trans. Power Deliv. 23, 576–585 (2008)

    Article  Google Scholar 

  8. Chaitusaney, S.; Yokoyama, A.: Prevention of reliability degradation from recloser-fuse miscoordination due to distributed generation. IEEE Trans. Power Deliv. 23, 2545–2554 (2008)

    Article  Google Scholar 

  9. Saleh, K.A.; Member, S.; Hooshyar, A.; El-saadany, E.F.; Member, S.; Member, H.H.Z.S.: Voltage-based protection scheme for faults within utility-scale photovoltaic arrays. IEEE Trans. Smart Grid 3053, 1–15 (2017)

    Google Scholar 

  10. Hooshyar, A.; El-saadany, E.F.; Member, S.; Sanaye-pasand, M.; Member, S.: Fault type classification in microgrids including photovoltaic DGs. IEEE Trans. Smart Grid 7, 1–12 (2015)

    Google Scholar 

  11. Brahma, S.M.; Member, S.; Girgis, A.A.: Development of adaptive protection scheme for distribution systems with high penetration of distributed generation. IEEE Trans. Power Deliv. 19, 56–63 (2004)

    Article  Google Scholar 

  12. Shih, M.Y.; Conde, A.; Leonowicz, Z.; Member, S.: An adaptive overcurrent coordination scheme to improve relay sensitivity and overcome drawbacks due to distributed generation in smart grids. IEEE Trans. Ind. Appl. 53, 9994 (2017)

    Article  Google Scholar 

  13. Orji, U.; Schantz, C.; Leeb, S.B.; Kirtley, J.L.; Sievenpiper, B.; Gerhard, K.; McCoy, T.: Adaptive zonal protection for ring microgrids. IEEE Trans. Smart Grid. 8, 1843–1851 (2017)

    Article  Google Scholar 

  14. Barra, P.H.A.; Coury, D.V.; Fernandes, R.A.S.: A survey on adaptive protection of microgrids and distribution systems with distributed generators. Renew. Sustain. Energy Rev. 118, 109524 (2020)

    Article  Google Scholar 

  15. Nascimento, J.P.; Brito, N.S.D.; Souza, B.A.: An adaptive overcurrent protection system applied to distribution systems. Comput. Electr. Eng. 81, 106545 (2020)

    Article  Google Scholar 

  16. Zidan, A.; Khairalla, M.; Abdrabou, A.M.; Khalifa, T.; Shaban, K.; Abdrabou, A.; Shatshat, R.E.; Gaouda, A.M.: Fault detection isolation, and service restoration in distribution systems: state-of-the-art and future trends. IEEE Trans. Smart Grid 8, 2170–2185 (2017)

    Article  Google Scholar 

  17. Mohanty, S.R.; Pradhan, A.K.; Routray, A.: A cumulative sum-based fault detector for power system relaying application. IEEE Trans. Power Deliv. 23, 79–86 (2008)

    Article  Google Scholar 

  18. Ray, P.K.; Panigrahi, B.K.; Rout, P.K.; Mohanty, A.; Dubey, H.: Detection of faults in power system using wavelet transform and independent component analysis. In: First international conference on advancement of computer communication & electrical technology (2016). https://doi.org/10.13140/RG.2.2.20394.82882

  19. Wei, Z.; Mao, Y.; Yin, Z.; Sun, G.; Zang, H.: Fault detection based on the generalized s-transform with a variable factor for resonant grounding distribution networks. IEEE Access. 8, 91351–91367 (2020)

    Article  Google Scholar 

  20. Khandare, P.; Deokar, S.; Dixit, A.: Optimization techniques using DWT-differentiation algorithms for fault detection and relay coordination in microgrid. Electr. Eng. (2020). https://doi.org/10.1007/s00202-020-01089-1

  21. Mishra, D.P.; Samantaray, S.R.; Joos, G.: A combined wavelet and data-mining based intelligent protection scheme for microgrid. IEEE Trans. Smart Grid. 7, 2295–2304 (2016)

    Article  Google Scholar 

  22. Borkhade, A.D.: Transmission line fault detection using wavelet transform. Int. J. Recent Innov. Trends Comput. Commun. 2, 3138–3142 (2014)

    Google Scholar 

  23. Ngui, W.K.; Leong, M.S.; Hee, L.M.; Abdelrhman, A.M.: Wavelet analysis: mother wavelet selection methods. Appl. Mech. Mater. 393, 953–958 (2013)

    Article  Google Scholar 

  24. Alwash, S.F.; Ramachandaramurthy, V.K.; Member, S.: Fault-location scheme for power distribution system with distributed generation. IEEE Trans. Power Deliv. 30, 1187–1195 (2015)

    Article  Google Scholar 

  25. Mahfouz, M.M.A.; El-Sayed, M.A.H.: Smart grid fault detection and classification with multi-distributed generation based on current signals approach. IET Gener. Transm. Distrib. 10, 4040–4047 (2016)

    Article  Google Scholar 

  26. Brahma, S.M.: Fault location in power distribution system with penetration of distributed generation. IEEE Trans. Power Deliv. 26, 1545–1553 (2011)

    Article  Google Scholar 

  27. Papaspiliotopoulos, V.A.; Korres, G.N.; Kleftakis, V.A.; Hatziargyriou, N.D.: Hardware-in-the-loop design and optimal setting of adaptive protection schemes for distribution systems with distributed generation. IEEE Trans. Power Deliv. 32, 393–400 (2017)

    Article  Google Scholar 

  28. Purwar, E.; Vishwakarma, D.N.; Singh, S.P.: A novel constraints reduction-based optimal relay coordination method considering variable operational status of distribution system with DGs. IEEE Trans. Smart Grid. 10, 889–898 (2019)

    Article  Google Scholar 

  29. Liu, Z.; Hoidalen, H.K.; Saha, M.M.: An intelligent coordinated protection and control strategy for distribution network with wind generation integration. CSEE J. Power Energy Syst. 2, 23–30 (2016)

    Article  Google Scholar 

  30. Abbasi, A.; Karegar, H.K.; Aghdam, T.S.: Adaptive protection coordination with setting groups allocation. Int. J. Renew. Energy Res. 9, 795–803 (2019)

    Google Scholar 

  31. Jarrahi, M.A.; Samet, H.; Ghanbari, T.: Fast current-only based fault detection method in transmission line. IEEE Syst. J. 13, 1–12 (2018)

    Google Scholar 

  32. Sheets, D., Ieee, F.O.R.: DATA SHEETS FOR IEEE 14 BUS SYSTEM.

  33. Dulău, L.I.; Abrudean, M.; Bică, D.: Optimal location of a distributed generator for power losses improvement. Proced. Technol. 22, 734–739 (2016)

    Article  Google Scholar 

  34. Ganivada, P.K.; Jena, P.: Frequency disturbance triggered D-Axis current injection scheme for islanding detection. IEEE Trans. Smart Grid. 11, 4587–4603 (2020)

    Article  Google Scholar 

  35. Peng, B.; Wei, X.; Deng, B.; Chen, H.; Liu, Z.; Li, X.: A sinusoidal frequency modulation fourier transform for radar-based vehicle vibration estimation. IEEE Trans. Instrum. Meas. 63, 2188–2199 (2014)

    Article  Google Scholar 

  36. Lee, S.; Kim, J.M.; Kim, J.M.; Kim, Y.K.; Kwon, Y.W.: Millimeter-wave MEMS tunable low pass filter with reconfigurable series inductors and capacitive shunt switches. IEEE Microw. Wirel. Compon. Lett. 15, 691–693 (2005)

    Article  Google Scholar 

  37. Mojiri, M.; Karimi-Ghartemani, M.; Bakhshai, A.: Time-domain signal analysis using adaptive notch filter. IEEE Trans. Signal Process. 55, 85–93 (2007)

    Article  MathSciNet  Google Scholar 

  38. Cooley, J.W.; Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Math. Comput. 19, 297 (1965)

    Article  MathSciNet  Google Scholar 

  39. Girgis, A.A.; Ham, F.M.: A quantitative study of pitfalls in the FFT. IEEE Trans. Aerosp. Electron. Syst. AES 16(4), 434–439 (1980). https://doi.org/10.1109/TAES.1980.308971

    Article  Google Scholar 

  40. dos Santos, W.C.; de Souza, B.A.; Brito, N.S.D.; Costa, F.B.; Paes, M.R.C.: High Impedance faults: from field tests to modeling. J. Control. Autom. Electr. Syst. 24, 885–896 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kesava Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesava Rao, G., Gangwar, T. & Sarangi, S. Advanced Relaying for DG-Penetrated Distribution System. Arab J Sci Eng 46, 9649–9661 (2021). https://doi.org/10.1007/s13369-021-05392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05392-2

Keywords

Navigation